메인글 문제 해설 완전판
게시글 주소: https://iu.orbi.kr/00069010568
합 S 곱 T
1. B가 “자신있게” <응너모름>을 외치려면, B가 가진 “합”은 두 소수의 합으로 표현되어선 안 된다.
(거의 사실이라고 알려진) 골드바흐 추측(*2보다 큰 모든 짝수는 두 소수의 합으로 표현할 수 있다)
에 의해, S는 홀수이다. 두 수의 합이 홀수라면, 두 수의 곱은 반드시 2를 인수로 가지므로 합인 S는 2x소수 꼴만 아니면 <두 소수의 합으로 표현될 수 없>다. 따라서 가능한 S의 후보군은 <홀수 중 소수+2가 아닌 것들의 집합>이다. 이 집합을 P라고 이름짓자.
좀 디테일하게 가보자면, 가능한 ”합“ S의
집합은 P{11,17, 23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,93,95,97}일 것이다.
2-1. C는 처음에 답을 몰랐으므로 T(곱)의 약수는 6개 이상이다.(...ㄱ)
2-2
C는 B가 외친 “응너모름”을 듣고 답을 알았으므로,
C가 알고 있는 T에 대해서 < T에 대응하는 모든 순서쌍을 관찰했을 때, 순서쌍에 대응하는 S들 중 딱 하나만이 P에 속했을 것>이다.
우선, P에 속하는 S가 존재하려면 T는 홀수여서는 안 된다(...ㄴ, T가 홀수면 쪼개서 더했을 때 짝수-> P에 못 들어감)
따라서 T는 약수 6개 이상인 짝수여야 한다.
또, P는 전부 홀수이므로 T(곱)을 두 수의 순서쌍으로 쪼갤 때 둘의 합(S)이 홀수이려면 T가 가진 모든 2를 한쪽에 몰빵해야 한다.
위와 같은 규칙으로, 가능한 T의 집합인 Q를 구할 수 있다.
3. B는 C가 ”알겠다“는 이야기를 듣고 답을 알았다. 이는 곧 B가 S를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중 Q에 포함되는 것이 단 하나 여야 한다는 얘기다.(Q의 정의는 윗 댓글 참고)
이때 핵심 아이디어가 등장한다. <2를 몰빵해야 함>에서 아이디어를 얻어 보자
만약 S가 4+p1으로 표현되면서 동시에 8+p2로 표현된다고 하자. (단 p1,p2는 소수)
그렇다면, 위 문단을 참조하면
<모든 순서쌍에 대응하는 T들> 중 Q에 속하는 T가 적어도 4p1, 8p2로 벌써 두 개가 되어 버린다. 따라서 P의 원소들 중 저렇게 표현되는 S들은 답이 될 수 없는 것이다.
이는 16,32,64에도 마찬가지로 적용된다.(*S는 2+p로 표현되지 않음을 처음에 얘기했으므로 이 경우는 제외 가능)
따라서, P{11,17,23,27,29,...95,97}에서, 2^@ + p 꼴(2<=@<=6)로 표현되는 경우의 수가 두 가지 이상인 P들을 모조리 제거할 수 있다!
이를 모두 제거하고 남은 집합을 P'이라고 하자. 그렇다면 P'는 {17,29,41,53,59,89,97} 이다.
(제가 노가다했습니다 믿어주세요ㅠㅠ)
이제< P'의 원소에 해당하는 S>를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중, Q에 속하는 것이 1개가 아닌 경우만을 제거하면 된다.
Q에 속하는 T를 나열하는 것은 비직관적이니, “곱이 Q에 포함되도록 하는 순서쌍“을 S를 기준으로 하여 나열하자.
(두 개가 되는 순간 더 세지는 않았습니다.)
S=29: (2,27) (4,25)
S=41: (4,37) (16,25)
S=53: (16,37) (40,13)
S=59: (16,43) (4,55)
S=89: (16,73) (64,25)
S=97: (8,89) (16,81)
S=17: T가 Q에 속하는 순서쌍이 (4,13) 하나로 유일함.
따라서, “두 수의 합”이 100 이하라는 전제 하에서는 (4,13)만이 유일하게 가능한 순서쌍임이 증명되었다.(범위고려안해도 유일한 해인지는 모르겠네요)
0 XDK (+3,000)
-
3,000
-
목표대학도 학과도 딱히 없는데 수학이 오를것같은데 자꾸 안오르고 국어성적이 아깝고
-
잠 안오면개추 1
나부터
-
저랑 잡담하실분 4
못 잘 거 같음 ㅛ.........
-
공부 0
화났다가 재밌다가 괴롭다가 즐겁다가 힘들다가 신나다가 롤러코스터 상태
-
이해원 제외(이미 품)
-
창문열고 잔다.
-
ㄹㅇ 크게 먹으면 두 젓가락 정도 나올 양인 듯.. 좀 아쉽네
-
영하 2도 ㄷ
-
으음 10
귓불도 아팠는데 아웃컨츠나 귓바퀴는 무리인걸가... 스트레스받으면 왠지 뚫고싶어지는
-
25LEET 솔로우 경제성장 모형 2311 기초대사량 2211 브레턴우즈 모두 문제...
-
배 아파 2
잠 늦게 잘 때마다 배가 아파
-
개인적으로 2311 게딱지와 2211 브레턴우즈의 추론은 결이 같다고 생각 1
둘다 거기서 막 화살표 치고 그런거 보다 지문 예시 끌고와서 처리하는게 훨 나을텐데...
-
예전에는 18시간 안 자는 게 기본이었고 많게는 24시간까지 새는 거 기능했는데...
-
수능 D-7 5
ㄱㄱ
-
고2 10모 빼고 다 1등급인데 듣고 가야할까요? 키스로직만으로 abps체화 할 만 한가요
-
공황장애 극복법 9
과거 생각나거나 지인 마주칠때마다 심장 두군거리고 숨이 안쉬어지는데 어캐...
-
ㅎr 사문만 되면 이제 괜찮은데..
-
문과 선택과목 0
정시 사문세지 조합 어떤가요 윤리 안맞아서 세지로 갈아타려하는데 흔한 조합인가요?...
-
7할 정도는 아기세 알 듯
-
我是他非 厚顔無恥 疊疊山中 2020년 그대로 복사에 붙여넣기 하면 됨.
-
이런 의미 없는 생각 동경만 한다 사랑만 한다 ?
-
실전을 주도하는 힘
-
원래 조회수 30부터가 와이파이 한 줄이었던 거 같은디 어느 순간부터 갑자기 바뀜
-
헉 8
목아프다..설마 감긴가 안되는데 옯끼야아아아악
-
오르비 하니까 시간 훅훅 가네 다들 주무셔요
-
곁들일 편의점 음식 추천 좀 컵라면 하나만 먹으면 죽는 병에 걸렸어요
-
순식간에 빨간색 와이파이 달성 가능 ㅋㅋㅋㅋㅋ
-
역시 사람은 8
힐링물을 봐야해
-
내 몸 만졌을 때 그립감이 다름
-
비활타다가 너무 심심해서 어제 비활 풀었는데 풀었는데 할게 없네
-
누군가는 웃고 누군가는 울겠네
-
아니 근데 이거 이감하다보니까 문학에서 눈 썩는 느낌인데 2
내가 못해진 건지 이감 문학이 X같은건지 모르겠네
-
이번 한 달 동안 한자 안 외우면 손으로 장을 비빈다. 7
지지기는 무섭고. 어문회2급따긴해야하는데
-
왜 안 보내줌??
-
今我異昨我 6
오늘의 나는 어제의 나와 다르다 ..... 그 말이 옳을까?
-
좀 할 일 제 때 하자.
-
작년 내 합격증 보내달라더니 그걸로 수능부적 만들었농 ㅅㅂㅋㅋㅋㅋㅋㅋㅋ
-
성공은 갑자기 이루어지는 것이 아니라, 반드시 그 원인이 있다
-
수능가서 3등급 가능한건가...
-
아진짜자야하는데 2
아
-
솔직히 디지몬 어드벤처는 명작이라고 생각해요
-
원딜은 주인공이 될 수 없어 내일부터 미드로 전향한다 버러지라인
-
원주각의 성질 이용해서 ACB 구하는 것부터 막혔습니다.. ㅜ
-
실수좀 제발 안 했으면 제발..
-
살도 빼는 빼빼로를 먹으면서 빼빼 말라지는
-
1교시니까 7
자러감 자잘!
-
개형추론나오면풀가능성0에수렴
검산한번더했다...
맞는거같나용
가독성은 별로인듯...
잠을 못 자서 신뢰하실 만한 컨디션은 아닙니다마는
완전히 이해했고 계산실수만 안 하셨으면 옳은 것 같습니다
다만 댓글에 관한 내용은 메인글에 쓰신 내용을 말씀하신 건지
복붙이슈네요 ㅎㅎ 확인했슴당
혹시 예전 닉네임이 대학어디가지 셨나요?
수학 잘 설명하셨던 기억이 있어요
어 네 맞아요! 되게 예전 이름인데 기억해 주시네요 감동입니다 ㅎㅎ
항상 글 잘 보고 있습니다!