메인글 문제 해설 완전판
게시글 주소: https://iu.orbi.kr/00069010568
합 S 곱 T
1. B가 “자신있게” <응너모름>을 외치려면, B가 가진 “합”은 두 소수의 합으로 표현되어선 안 된다.
(거의 사실이라고 알려진) 골드바흐 추측(*2보다 큰 모든 짝수는 두 소수의 합으로 표현할 수 있다)
에 의해, S는 홀수이다. 두 수의 합이 홀수라면, 두 수의 곱은 반드시 2를 인수로 가지므로 합인 S는 2x소수 꼴만 아니면 <두 소수의 합으로 표현될 수 없>다. 따라서 가능한 S의 후보군은 <홀수 중 소수+2가 아닌 것들의 집합>이다. 이 집합을 P라고 이름짓자.
좀 디테일하게 가보자면, 가능한 ”합“ S의
집합은 P{11,17, 23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,93,95,97}일 것이다.
2-1. C는 처음에 답을 몰랐으므로 T(곱)의 약수는 6개 이상이다.(...ㄱ)
2-2
C는 B가 외친 “응너모름”을 듣고 답을 알았으므로,
C가 알고 있는 T에 대해서 < T에 대응하는 모든 순서쌍을 관찰했을 때, 순서쌍에 대응하는 S들 중 딱 하나만이 P에 속했을 것>이다.
우선, P에 속하는 S가 존재하려면 T는 홀수여서는 안 된다(...ㄴ, T가 홀수면 쪼개서 더했을 때 짝수-> P에 못 들어감)
따라서 T는 약수 6개 이상인 짝수여야 한다.
또, P는 전부 홀수이므로 T(곱)을 두 수의 순서쌍으로 쪼갤 때 둘의 합(S)이 홀수이려면 T가 가진 모든 2를 한쪽에 몰빵해야 한다.
위와 같은 규칙으로, 가능한 T의 집합인 Q를 구할 수 있다.
3. B는 C가 ”알겠다“는 이야기를 듣고 답을 알았다. 이는 곧 B가 S를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중 Q에 포함되는 것이 단 하나 여야 한다는 얘기다.(Q의 정의는 윗 댓글 참고)
이때 핵심 아이디어가 등장한다. <2를 몰빵해야 함>에서 아이디어를 얻어 보자
만약 S가 4+p1으로 표현되면서 동시에 8+p2로 표현된다고 하자. (단 p1,p2는 소수)
그렇다면, 위 문단을 참조하면
<모든 순서쌍에 대응하는 T들> 중 Q에 속하는 T가 적어도 4p1, 8p2로 벌써 두 개가 되어 버린다. 따라서 P의 원소들 중 저렇게 표현되는 S들은 답이 될 수 없는 것이다.
이는 16,32,64에도 마찬가지로 적용된다.(*S는 2+p로 표현되지 않음을 처음에 얘기했으므로 이 경우는 제외 가능)
따라서, P{11,17,23,27,29,...95,97}에서, 2^@ + p 꼴(2<=@<=6)로 표현되는 경우의 수가 두 가지 이상인 P들을 모조리 제거할 수 있다!
이를 모두 제거하고 남은 집합을 P'이라고 하자. 그렇다면 P'는 {17,29,41,53,59,89,97} 이다.
(제가 노가다했습니다 믿어주세요ㅠㅠ)
이제< P'의 원소에 해당하는 S>를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중, Q에 속하는 것이 1개가 아닌 경우만을 제거하면 된다.
Q에 속하는 T를 나열하는 것은 비직관적이니, “곱이 Q에 포함되도록 하는 순서쌍“을 S를 기준으로 하여 나열하자.
(두 개가 되는 순간 더 세지는 않았습니다.)
S=29: (2,27) (4,25)
S=41: (4,37) (16,25)
S=53: (16,37) (40,13)
S=59: (16,43) (4,55)
S=89: (16,73) (64,25)
S=97: (8,89) (16,81)
S=17: T가 Q에 속하는 순서쌍이 (4,13) 하나로 유일함.
따라서, “두 수의 합”이 100 이하라는 전제 하에서는 (4,13)만이 유일하게 가능한 순서쌍임이 증명되었다.(범위고려안해도 유일한 해인지는 모르겠네요)
0 XDK (+3,000)
-
3,000
-
수능때 국어때 최소 국어3 최대 국어2 이정도 생각하는데 (화작임) 근데 이감...
-
수능 국어 백분위 100을 받고 국어과외를 하고싶다 2
소원이다
-
진짜 춥네요 그래도 모닝 아아는 못참지..
-
사문 도표.. 4
도표빼고 개념기출은 다 해놓은 상태인데요 임정환 도표특강을 들을지 아니면 검더텅으로...
-
작수생윤 4
현장에서 블랭크날수도있겠다싶었던분계신가요 ㅈㄹ쉽게나온거같긴해서
-
오르비 망했네 0
-
나에게 빼빼로란 0
1111111임 내신!
-
첨엔 둘 차이 별로 없는 줄 알았는데 그립 두께가 너무 차이가 많이 나서 오랜만에...
-
정시:대학가야한다 국영수탐탐백분위99 수시:딸깍 ㅋㅋㅋㅋㅋㅋ
-
추운 오늘 하루도 화이팅
-
새해의 눈시울이 순수의 얼음꽃, 승천한 눈물들이 다시 땅 위에 떨구이는 백설을 담고 온다.
-
이감에 시즌6이랑 파이널2랑 같은거지? 국어 파이널2 7차면 이감 시즌6 7회차...
-
국어-이번주까지 실모+언매 양치기, 다음주부터 24 69수능, 2506 기출 ,...
-
오늘은 긴바지를 8
착용 쌀랑해
-
수능 도시락 0
본가말고 타지역에서 수능보는데 도시락을 어케해야할까요..
-
ㄹㅇ 이정도면 사교육판에서 참강사임 내 구 담임들보다 좋은듯
-
한의원 가서 침 맞으면 도움 좀 되나요?? 고개 조금만 숙이고 있어도 땡김..
-
공부하려고 책 펴도 힘들었던 일들이 계속 생각나고 집중할 수가 없음
-
탐구연계 0
탐구 수완 연계는 어느정도 유의미한가요.. 물리 화학 기준으로여 물리 수완 아직...
-
박석준T 듣는데 수업에서 연계 예상 이런건 잘 안 해주셔서... 출제기조 자체...
-
ㅈㄱㄴ
-
이건좀
-
얼버기 2
늦버기...
-
시작
-
오늘도 파이팅.
-
에구궁 졸려 1
준비 갈 완료
-
하면 얼어죽을듯
-
하늘을 찌르는 SOXL + 트럼프 밈주 + 환율 폭등 1000만원으로 하루만에...
-
기하는 풀이 없는 것 같아서 올려봅니다. 28 빼고 시간재고 푼 풀이고 28은...
-
얼버기 2
앞줄 어느방은 2시부터 4시간동안 알람을 안꺼??
-
와 2도야 미친 2
ㄹㅇ 세종대왕님인가 ㅈㄴ 춥네
-
독서 사회,경제:아웃소싱->국제적으로(오프쇼어링)+경상수지...
-
일탈행위의 발생과정에서 나타나는 상호작용에 주목하는가? 에 맞는게 차별적교제이론...
-
꼼꼼히 한다 하면 개념 얼마나 걸려요..???
-
얼버잠 1
다들 평안한 밤 되십시오. 소등하겠슴다.
-
책 왕창 빌리고 샀는데 시간 순삭이넴 글고 안 유명한데 재밌는 책 발견하면 좀 짜릿함ㅎ
-
진짜 집에 아직도 있는게 소름이넹 ㅋㅋㅋ
-
얼버기 1
아파ㅓ 일찍자고 이제 일남
-
최저러라서 마지막 일주일동안 생윤 커리 하나만 더 듣고 마무리하고싶은데 뭘 하면...
-
세지 정법 둘 다 문제스타일이 굉장히 물화생지윤리사문역사에 비해 마음에 듦 ㅋㅋ
-
쿠팡 몰빵 4
누가 이기나보자
-
예비 고3입니다 4
지금 현재 10모 백분위 대략 99 초반이 떳는데 고3되면 어느정도 되나요?
-
점수가 맨틀 뚫고 내핵까지 들어가는데 그냥 기출 복습이나 할까요.. ㅠㅠ
-
목표대학도 학과도 딱히 없는데 수학이 오를것같은데 자꾸 안오르고 국어성적이 아깝고
-
잠 안오면개추 1
나부터
-
저랑 잡담하실분 4
못 잘 거 같음 ㅛ.........
-
공부 0
화났다가 재밌다가 괴롭다가 즐겁다가 힘들다가 신나다가 롤러코스터 상태
-
이해원 제외(이미 품)
-
창문열고 잔다.
검산한번더했다...
맞는거같나용
가독성은 별로인듯...
잠을 못 자서 신뢰하실 만한 컨디션은 아닙니다마는
완전히 이해했고 계산실수만 안 하셨으면 옳은 것 같습니다
다만 댓글에 관한 내용은 메인글에 쓰신 내용을 말씀하신 건지
복붙이슈네요 ㅎㅎ 확인했슴당
혹시 예전 닉네임이 대학어디가지 셨나요?
수학 잘 설명하셨던 기억이 있어요
어 네 맞아요! 되게 예전 이름인데 기억해 주시네요 감동입니다 ㅎㅎ
항상 글 잘 보고 있습니다!