전대미문의 수학천재 가우스.
게시글 주소: https://iu.orbi.kr/0005470735
BC 300년 유클리드 이후 1777년 가우스가 탄생하기까지
1000년이 넘는 시간동안 어떤 수학자도 7각형 작도법을 찾아내지 못합니다.
놀랍게도 19세의 가우스는
17각형 작도법을 발견하고 여기에 그치는 것이 아니라
"변의 개수가 소수인 다각형은 페르마 소수를 만족할때만 작도가 가능하다"
라는 명제까지 증명해 냅니다.
F_n = 2^(2^n)+1
n=1일 때 F_1= 5 이므로 정5각형은 작도 가능.
n=2일 때 F_2=17 이므로 정17각형은 작도 가능.
7은 페르마 소수가 아니므로 작도 불가능.
가우스는 묘비에 정17각형을 새겨달라는 유언을 남겼으나 석공이 정17각형 작도가 힘들다는 핑계로
뜻을 못이루었습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
가우스 ...♡
무슨짓이야
7각형 작도법도 올려주시지 신기하네여
7은 페르마 소수가 아니어서 작도불가..
와.................................... 놀랍다
갓우스..
페르마 짱
지나가던 문돌이는 마지막에 "와 꽃이다" 하고 마저 지나갑니다
수학의 왕... 올타임 레전드 ;
교과서에서 봤는데 17각형 작도법 10대때 증명했다고 하죠...
등차수열의 합공식도 7살인가..?
1부터 100더하는거 거꾸로 한번 더하고 선생님이 이해를 못하니
수식을 활용해서 (시그마,문자) 훌륭하게 증명해 낸...
가우스 오일러 모두 멋져요ㅎ 짱