주멘 모고 1회 8번 이렇게 풀었어요?
게시글 주소: https://iu.orbi.kr/00036199568
안녕하세요, MENTOR 이다희입니다.
오늘은 주예지T X MENTOR 모의평가 1회의 공통 ‘8번’ 문항의 별해에 관해서 이야기해보겠습니다.
8번 문항은 3점짜리 문항으로, 고득점을 목표로 하는 학생들은 가볍게 풀어내야 하는 문제입니다.
‘나는 8번 맞혔으니까 이 칼럼은 안 읽어도 되겠네~’라고요? 과연 그럴까요?
위 문제에서 최고차항의 계수와 극값에 대한 정보를 줬으므로 함수 f(x)의 도함수 f'(x)를 정확히 구할 수 있습니다.
따라서 8번 문항은 도함수 f'(x)를 통해 함수 f(x)를 구하는 문제라고 생각할 수 있습니다.
이렇게 말이죠!
위의 해설처럼 8번 문제를 풀었어도 틀린 것은 아닙니다. 잘하셨습니다.
그런데 문제는 f(-3)-f(2), 즉 함수 f(x)의 함숫값의 변화량을 묻고 있네요?? 뭔가 떠오르지 않나요?
여기까지 왔으면 떠올랐어야 합니다!
8번 문항은 함수 f(x)의 함숫값의 변화량 = 도함수 f'(x)의 정적분 값을 이용해서 문제를 푸실 수 있었습니다.
이것을 이용한 풀이를 보여드리기 전에 왜 함수 f(x)의 함숫값의 변화량 = 도함수 f'(x)의 정적분 값인지 설명해드리겠습니다.
함수 f(x)가 닫힌구간 [a, b]에서 연속일 때, 함수 f(x)의 한 부정적분 F(x)에 대하여
이므로 함수 F(x)의 함숫값의 변화량 = 함수 F(x)의 도함수 f(x)의 정적분 값이라고 볼 수 있습니다.
따라서 해당 구간에서 연속인 함수 f(x)에 대하여
도함수 f'(x)의 정적분의 값은 함수 f(x)의 함숫값의 변화량과 같습니다.
이제 이를 이용하여 공통 8번 문항의 풀이를 보여드리겠습니다.
문제에 주어진 정보로 함수 f(x)의 도함수가 f'(x)= 3(x+3)(x-2)라는 것을 알 수 있습니다.
이에 함수 f(x)의 함숫값의 변화량이 도함수 f'(x)의 정적분의 값이라는 것을 통해
임을 유추해 낼 수 있습니다.
하지만 값을 구하려면 적분하고 대입하고 계산하고....똑같지 않냐고요?
함수 f(x)가 극값을 갖는 삼차함수이고, 이때 함수 f(x)에 대하여 (극댓값)-(극솟값)>0이므로
해당 값을 함수 f(x)의 도함수인 f'(x)에서 이차함수의 넓이 공식으로 구할 수 있습니다.
여기서 이차함수의 넓이 공식을 알아야 우리가 문제를 제대로 맛깔나게 풀어냈다고 볼 수 있겠죠!
이차함수와 직선으로 둘러싸인 넓이는 최고차항의 계수, 이차함수와 직선의 교점의 x좌표만 알면 구할 수 있다는 것,
다들 알고 계시죠? 그래도 모르시는 분들을 위해 기꺼이 증명해드리겠습니다.
다시 8번 문항 풀이로 돌아오면
이고 f'(x)=3(x+3)(x-2) 이므로 이차함수 넓이 공식을 활용하여
로 구해낼 수 있습니다.
직접 풀어보시면 더 잘 아시겠지만 부정적분을 구해 숫자를 대입하고 계산한 방법과 비교해볼 때,
함수 f(x)의 함숫값의 변화량 = 도함수 f'(x)의 정적분의 값 , 이차함수 넓이 공식을 알고 푼 것이
훨씬 모의고사 풀이 시간 절약도 되고 더 맛깔나게 풀어낸 것 같지 않습니까?
이 개념들을 숙지하고 있을지라도, 이를 시험 볼 때 이용해서 푼다는 건은 정말 어렵다는 것을 경험하신 계기가 되셨으면 좋겠습니다.
추가로 도형의 넓이를 구할 때 사용되는 특수한 공식들을 정리해드리겠습니다.
1) 이차함수와 직선이 서로 다른 두 점에서 만날 때
2) 서로 다른 두 이차함수가 서로 다른 두 점에서 만날 때
3) 삼차함수와 직선이 서로 다른 두 점에서 만날 때 (삼차함수와 접선)
고득점을 목표로 하는 수험생이라면 대학수학능력시험에서 시간은 금이기에 시간 단축에 용이한
넓이 공식들은 필수적으로 외워두고 활용할 줄 알아야 합니다.
여러분들의 수학 실력 향상을 위해 저희 MENTOR도 열심히 달려보도록 하겠습니다!
주멘 모고 1회 문제지&해설지 바로가기
주멘 모고 1회 해설강의 바로가기
주멘 모고 1회 FAQ 바로가기
주예지 X MENTOR 모의평가 일정 바로가기
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
누군 엄청 어렵다하고 누군 쉬웠다하는데 커뮤에서는 어려웠다는게 게 정배인거같긴함...
-
100 96받아도 미적한테 밀리고 확통이라는 벽때문에 공대지원 불가 국어 못하는데...
-
답정너 1
-
레어 질렀다 0
ㅎ.ㅎ
-
GO BACK 제자리 이기 때문
-
신검받고회기가서술먹을려고요 조아조아
-
어디까지 갈 수 있을까
-
경제는 확정이고 나머지 하나 고민이에요 사문 하려했는데 보니까 말장난으로 변별하는거...
-
미리 뭘 공부해가면 좋을까요 아니면 추천하는 책이라도
-
둘이서 끝장내기 ㅋ
-
롯폰기 클럽 습격 사건 (六本木クラブ襲撃事件) 롯폰기 5쵸메 잡거빌딩 음식점 내...
-
예쁘다는 리플 말고요ㅜㅜ 도움이 많이 되셨나요???
-
"너를 둘러싼 상태공간을 선형변환을 넘어 더 복잡한 변환으로 변화시켜줄게."...
-
작년에 언제 올린지 아시는분?
-
어제 아니었나
-
홋카이도 4박 5일 여행비 500만원 뭐지... 여행갔다와서 거지처럼 살아야지
-
이유좀
-
가톨릭식 평백 93임
-
둘 다 합격하면 어디 가세요?
-
집가는중 2
힘들어
-
나에게 기회가 왔다.. 제발...
-
큐브 하신분들 8
시간당 얼마정도 벌리나여
-
아니 도서관 0
백번양보해서 무영탑은 없다고 쳐 근데 금시조가 없는건 선 넘었는데
-
가천대 논술 수험표 뽑을때 그냥 프린터로 a4용지에 뽑아가도 되나요? 그리고 이번...
-
저는 그른 것 같습니다.. 다들 성불하시기 바랍니다
-
근데그래도합격은못할거같은이느낌
-
참 대학이 뭐라고 다들 목빠지게 열심히하는걸까??? 대학때문에 누구는 울고,웃고...
-
옯스타를 파게 되었어요 생각보다 뒷세계가 크군요
-
키타간다아아 8
아아아아아아
-
500덕)내 최애캐 10
힌트) 빨뚝이 이정도면스피드게임이다
-
화학1만 좀 알고 화2생1생2를 다 모르는데 연의는 포기해야할까요..
-
여캐일러투척 3
음역시귀엽군
-
다 헤어져라 끄아아아어아억
-
요새 조기발표가 유행인듯 한데
-
언젠간 한 번 의대논술 도전해보고 싶었는데 일단 최저는 맞춰야 하니까... 일단...
-
인생 한 번쯤은 웩슬러 지능검사를 보고 싶은데 휴가 기간 내에 결과까지 받을 수...
-
오르비에나싫어하는사람이 그렇게만다는거잖아
-
투표 ㄱㄱ
-
탈릅은 기세다 2
근데 제 덕코를 보자마자 기세가 꺾였어요
-
드가자
-
대학생활꿀팁 2
사람들과 어울리기 괜찮은 취미갖기 아님말구요..
-
투표 ㄱㄱ
-
관련 글 너무 많이 올리는 것 같아 죄송합니다 생각해보니까 이렇게 두 개로 나와서...
-
중화는몰라도 산환파트에서 안틀리는게목표임 ㅇㅇ 내가너무산환을좆밥으로보나......
-
제목이 곧 내용입니더….
-
안 씻어서 물리력ㅇ 상승 럭키비키력 하락함
-
에임랩 켜서 에임연습 하는중
-
02년생분들 있나
그럼 주멘 모고 2회를 기다리시면 됩니다! 한 문제 스포정돈 괜찮아요 ㅎㅎ 화이팅^*^
저도 저렇게 풀어서 눈으로만 파악하는 문제 난이도 범주가 크게 늘었답니다. 나형 킬러까지는 그냥 쭉 보면서....
역시 대단하시네요 ㅎㅎ
"원함수의 높이차이는 그 구간에서 도함수의 넓이와 같고, 그 넓이는 다항함수일 경우 공식으로 빠르게 계산한다." 저도 이렇게 풀었어요 ㅎㅎ
크 미래가 밝습니다! 주멘 모의고사 2회도 기대해주세요~!
지금 느낌 그대로 만점에 도전하세요~! (노래방 점수언니)
와 나름 빨리 풀었다고 생각했는데 더 빠른 방법이 있었네요;; ㄷㄷ
그래도 잘하신겁니다! ! 앞으로도 관심 많이 가져주세요~:D
저렇게 f는 구했는데 적분컨셉은 유익하네요 하나 배워갑니당ㅎㅎ
유익하셨다니 뿌듯합니다ㅎㅎ 수학 다 뿌시고 연세대 갑시다!-!
빠른 피드백 MENTOR입니다! 계속 많은 관심 부탁드려요^*^
3점짜리니까 3점짜리인 이유가 있지 않을까 하고 출제자의 의도를 생각하면서 풀고난뒤 글을 읽었는데 역시... 짜릿해 ... ... ...
짜릿해! 늘 새로워! 잘생긴게 쵝...ㅇ...아니 수학이 최고입니다 :D 2회도 짜릿할 예정이니 관심 부탁드려요!!
이거 극값 차이 공식 사용해도 되지 않나요?
|4ap^2|이요
반드시 알아야 하는 공식은 아니라고 생각합니다만... 일단 잘못 알고 계신 것은 정정해드릴게요! 사실 칼럼 내용도 '꼭 알아야 하는 내용'은 아닙니다. 특수한 상황에서 조금의 도움을 줄 수 있을 뿐이죠! 말씀하신 공식도 사실 저희도 처음 알았답니다..^^