수리영역 기출문제의 논리적 접근 (함수의 볼록성)
게시글 주소: https://iu.orbi.kr/0003447649
이번 글에서는 함수의 볼록성에 관해서 다루어보려고 합니다.
함수의 오목,볼록은 수능에서도 몇 번 출제가 됐었고, 논술과 면접에서도 많이 나왔던 소재입니다.
수능에서는 볼록 '그래프'의 특징에 대해서 묻고, 논술과 구술에서는 f''(x)>0(<0)이므로 f'(x)가 증가(감소)라는 것을 이용해
원하는 모양으로 식을 다루는 능력을 봅니다.
이를 먼저 알고서 문제를 풀어보겠습니다.
(96년 수능)
ㄱ,ㄴ을 보고서 어떻게 풀어야 하는지 바로 떠올라야 합니다.
지수/로그함수 그래프 문제에서처럼 분수식을 '기울기'로 해석하는 거였으니까요.
비록 이 문제가 훨씬 쉽지만 모두 공통된 아이디어로 진행되고 있음을 느끼셔야 합니다.
그래서 이렇게 확인하면 끝입니다.
이제 볼록성을 통한 f'(x)의 증가/감소 여부를 통해 논리적으로 풀어봅시다.
이 문제는 그냥 그래프로 주어졌지만 조건을 달자면 양수 x에 대하여 f''(x)<0, f'(0)=1 입니다.
식의 모양을 통해 어떤 함수를 가져와야 하는지는 감이 와야 합니다.
(05년 수능)
이 문제는 ㄷ보기를 잘 봐야 합니다. 일단 교과서로부터 정적분은 곧 넓이와 직결된다는 개념을 알고 있습니다.
그렇다면 부등호 오른쪽의 식도 넓이로 이해해야 두 개의 비교가 되겠죠?
이렇게 교과서로부터 알 수 있는 개념으로 문제풀이의 키를 잡습니다.
따라서 수능식 해설은 이렇습니다.
이제 논리적 풀이를 위한 아이디어를 추출해냅시다.
일단 부등식을 정리해서 우변을 (b-a){f(a)+f(b)}/2 로 만들어 봅시다.
그럼 이 식은 사다리꼴 넓이를 뜻하게 되는데, 이 때 이 부등식이 성립할 수 있는 이유는
구간 (a,b)에서 (a,f(a)),(b,f(b))를 잇는 직선이 f(x)보다 항상 위에 있기 때문입니다.
이 사실을 증명하는 것이 포인트입니다.
이 아이디어를 잘 기억해놓고 다음 문제를 봅시다.
(10년 9월 평가원)
이또한 정적분과 관련된 식을 넓이로써 이해하고 그 둘을 비교하는 패턴의 문제입니다.
그래서 수능식 해설은 이러합니다.
그렇다면 증명하는 아이디어 또한 이와 동일하겠죠?
연습 차원에서 한 번 더 연습해봅시다.
이번 글을 통해서 함수의 볼록성을 다룰 때는 f'(x)가 증가/감소함수라는 사실을 이용할 수 있고,
직관적으로 푼 풀이에서 논리적인 이유를 분석한 후, 거기서 나오는 아이디어를 그대로 증명에 적용할 수 있다는 사실을 알 수 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
최적조교떨… 3
솔직히사문은수능때개처말아먹어서탈락ㅇㅈ 근데정법은 47>48>50인데 나왜떨어졋냐고…
-
둘다 경영
-
교육부 “연세대 논술 초과모집 인원, 2년 후 입시에서 감축” 2
https://www.etnews.com/20241127000423 교육부가...
-
혈육인지 나인지는 몰루? 집에서 주운건 마즘
-
연세대 논술 공감 16
재수때 최저 4합8 못맞춰서 그냥 안 감 ㅋㅋ
-
하면서 숨은키 2cm 찾았음요
-
연세대 2
수시 논술쓰고 1차안간사람은 못가는거임?
-
후회없이 사랑했노
-
둘 중에 고르라면 뭐 고를 거 같나요??
-
독하다독해
-
여긴 왜 실내인데 추워…으앙
-
이게 옳게됐지
-
이거 어카지 환불 위약금 시간당 2만원이라 환불도 못함
-
이론상 확통 1등급이 없을 수도 있나요? 확통이들이 모두 공통을 너무 틀렸을때
-
십의 자리에서 하면 ㄹㅇㅋㅋ
-
ㅇㅁㅇ
-
어렸을때 많이 했던 플래시게임인데
-
전기파트에서 0
알아둬야할 미분,적분 있나요
-
연논 환불 0
환불은 안해주디?
-
딱 나네..
-
수학 한문제 실수가 아쉬워서 이대로는 수능판 못뜨겠딘
-
키 소신발언 33
키 큰 게 좋으신가요? 갠적으로 심각수준만 아니면 키는 적당한 게 좋다고 생각합니다...
-
난 158인데. 14
그래서 여친이 나 찾을때 키 보고 찾는대. ㅠㅠ 팩트는 나도 여친 찾을 때 키로 찾는다는 거지만..
-
제가 좋아하는 세가지입니다
-
저걸 다 우리가 치워야 했었기 때문이죠
-
ㄹㅇ루다가
-
연세대 자연계 2차 논술이 생각보다 영향이 적을 수도.. 6
논술 전형 도전자 중에다른 상위학교로 수시에서 이탈하는 학생이 많이 나올 것 같지는...
-
세지 한지 뭐가 더 어려운가요?+ 세지 잘맞으면 한지 3
세지 한지 뭐가 더 어렵나요? 그리고 세지 잘맞으면 한지해도 문제 없을까요??
-
처녀 눈 밟기 6
뽀드득 뽀드득
-
추가시험 결정된 김에 원래 시험지 다시 올려봄 (+난이도 예측?) 1
원본이 절대로 아님. (ㄹㅇ로 다시 편집한거임) 근데 2차시험은 진심으로 이거보다...
-
이렇게 인강판의 밸런스를 맞춰버린다고? ㅋㅋㅋ
-
ㄹㅇ ㅋㅋ 우리동네는 쌓이지도 않음...
-
이미20~30센치씩 쌓여있는데18시간동안 눈이 더 온다고요??
-
2였음???????? 왜 성적표받아보니까 백분위가93이지?? 언매1틀인데...
-
지하철은 가냐???
-
설경 10
-
버스도 아누옴 ㅜ 집에ㅜ못 가
-
나 진짜 조난당하는줄 알았는데
-
연대논술 유출범 0
연공다니는 친구있는데 저능아 보이면 잡는다네요 조심하세요
-
올해 의대 증원 이슈로 의대 가려는 사람들이 늘어났던 걸로 알고 있는데 수학...
-
진짜 여기ㅜ10년살면서 눈 오늘 비슷하게도 ㅇㅎㄴ 적 없는데 ㄹㅇ 존나 마ㅏ뇨음 걍...
-
혹시 면접이나 시험 보신 분들 계시면 팁 좀 던져주고 가주세요ㅠ
-
줏어 들었음뇨
-
훈훈 182 건동홍 vs 평범 173 서울대or지방의 20
둘다 원하는과 기준(일반과만) 후자는 타 메디컬 원하면 그건 어디든 ㄱㄴ (단...
-
진짜 눈 미쳤나 2
서울에 이렇게 오랫동안 많이 온 걸 살면서 처음 보는 듯
-
기억이 안 나는데 동덕여대 쪽 스프레이 깽판 쳐 놓은 거랑 시설물 페인트 테러한 거...
-
현역때 종합 서류에서 떨어졌으면 재수때 안쓰는게 좋음? 1
ㅈㄱㄴ 동국한 1차서류떨햇는데 내년에 안쓰는게 맞나
첫번째 댓글의 주인공이 되어보세요.