수리영역 기출문제의 논리적 접근 (11년 수능)
게시글 주소: https://iu.orbi.kr/0003419328
지수/로그함수 그래프 해석 문제 중 극악의 난이도를 자랑하는 걸로 유명한 문제입니다.
일단 수능적으로 접근해본다면
ㄱ 보기는 '초월함수에 관한 방정식의 일반적인 해법은 없다.' 라는 사실을 통해 의 값을 직접적으로 구할 수 없음을 알고,
주어진 근방의 값은 (1/2)과 1을 그래프에서 대입하여 대소를 비교해보면 됩니다.
'초월함수에 관한 방정식의 일반적인 해법은 없다.'는 것을 알면 그 방정식의 특정값을 구하려는 불필요한 시도를 피할 수 있습니다.
실제로 올해 13년 6월 평가원 30번 문제도 위와 같은 사실을 바탕으로, f(n) 값을 구하려할 때
n을 대입하여 a를 구해나가려는 것보단 a값을 설정한 후 f(n)값을 구하는 것이 더 효율적이라는 판단을 할 수 있었습니다.
또한 위의 문제와 같이 지수/로그함수 그래프 해석문제에서 어떤 상수와 교점의 x,y좌표값을 비교하려할 때도
이런 생각을 가지고 접근한다면 시간을 많이 절약할 수 있을 것입니다.
ㄴ 보기는 지수함수와 로그함수의 역함수 관계를 빨리 알아채는 것이 핵심이었습니다.
실제로 이 해의 6,9월 모의평가에서 지수함수와 로그함수의 역함수 관계를 파악해야 하는 문제가 모두 나왔고
그게 그대로 수능까지 연결되어 나왔습니다. 학생들이 그 해 치르는 6,9월 모의평가의 분석이 얼마나 중요한 지 알 수 있는 부분입니다.
ㄷ 보기는 ㄴ에서 알아낸 역함수 관계를 그대로 이용하여 문제를 해결합니다. ㄱ ㄴ ㄷ 연관성을 파악해야 하는 문제죠.
(이 문제에서는 ㄱ이 독립적이긴 합니다.)
그리고 이런 부등식을 해석할 때는 항상 '기울기'를 염두에 두고 있어야 합니다.
지수/로그함수 그래프 해석문제의 난이도가 급격하게 올라갈 수 있는 부분이 바로 이 '기울기로의 해석'이기 때문에
어떤 식으로 응용되는지 연습을 통해서 꼭 익혀보셔야 합니다.
(하지만 요즘은 이 패턴의 문제가 많이 사라지는 추세이기 때문에 너무 많은 시간을 투자하시는 것은 비추입니다.)
ㄱ ㄴ ㄷ 보기의 연관성이 있는지 없는지 파악하는 부분과 대소관계를 '기울기'로 해석해보는 안목을 이 문제로써 알아가시면 되겠습니다.
이제 이 문제의 논리적 해석을 시작해보겠습니다. ㄴ 보기는 역함수 관계라는 것만 밝혀주면 딱히 비약없이 논리가 진행됩니다.
따라서 그래프에서만 확인해보았던 ㄱ 보기와 ㄷ 보기를 어떻게 엄밀하게 푸는지를 소개해보겠습니다.
이 증명의 아이디어는 ㄱ 보기를
로 바꿔서 생각하는 겁니다. 이렇게 생각하면 중간값의 정리를 사용해야한다는 생각이 바로 들기 때문에 쉽게 증명할 수 있습니다.
참고로 위의 방정식의 근이 유일하다는 것을 그냥 넘어갔는데, 문제의 조건이 그래프로 주어져있고,
그래프에서 근이 유일함을 확인할 수 있기 때문에 증명을 따로 하지는 않았습니다.
그러나 만약에 이 부분을 증명해야 한다면
가 감소함수이면서 ((1/2),1)를 포함하는 어떤 구간을 잡아서 보이면 됩니다.
감소함수 f(x)가 0이 되는 x는 하나밖에 없음이 자명하기 때문입니다.
참고로 유일성에 대한 증명은 그 요소가 2개가 있다고 가정한 후 결과적으로 그 2개가 같음을 보이면 되는데,
제가 이 글을 연재하면서 보니 아까처럼 함수를 가지고 와서 그 함수가 증가 또는 감소임을 이용하는 것도 많은 거 같습니다.
그래프에서는 기울기로 확인한 것을 함수로 만들어서 확인해본 겁니다.
그래프에서는 기울기로 확인한 것을 함수로 만들어서 확인해본 겁니다.
함수로 만드는 사고과정을 정리해보자면 (1,0)과 이어지는 점들을 여러개 조사해보면서 기울기의 값의 변화 양상을 추론해보고,
그 양상이 감소임을 알아채서 그것을 함수로 만든 겁니다.
여기서 f'(x)는 부호판별만 하면 되니까 g(x)라는 함수의 부호가 어떻게 되는지만 보면 되는데,
공교롭게도 g(x)>0라고 나와주네요.
이를 통해 증명에는 직관이 전혀 쓰이면 안 되지만, 증명을 시작함에 있어서는 직관적인 안목이 아주 중요함을 알 수 있을 겁니다.
----------------------------------------------------------------------------------------------------------------------
저번에도 이런 글을 하나 올렸는데 앞으로 자주 올려볼게요.
좋은 실력은 아니라서 여기서 검토 좀 받고 다듬어야 할 필요성을 느꼈습니다.
오류 있으면 지적해주세요 감사히 받겠습니다.
P.S 블로그에도 이 글을 연재하고 있는데 현재 10편 정도 작성했습니다.
블로그에 올려놨다가 어느 정도 정확성이 있다고 판단 되면 오르비에도 올리려고 하는데
혹시 시간 남으신다면 들러서 의견 나눠받았으면 좋겠네요.
그리고 이외의 어떤 질문도 다 받습니다 ㅇㅇ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그냥 자연재해급 대참사 대비해서 가천대 1개 논술로 넣었는데 수학은 미적 1턱~2중...
-
생윤 유불도 0
유불도 욕구에 대해 뭐라고 말하나여 셋 다 절제해야한다고 본 건가요, 제거해여한다고...
-
영어 아예노베들이 듣는 강의인가요? 6~7등급?
-
쌈무나보고가라 3
-
여자친구랑(없음) 카톡하다 잠들고 싶은 밤
-
근데 올해 9모 보면 물수능도 다른 의미로 트라우마일듯 황밸수능 원해용...
-
어쩐지 요즘 안 보이시더라.. 이제 알았네..
-
르크
-
맛이 없냐 비싸기만 하고 ㅡㅡ 몇만원은 줘야 제대로 된거 먹겠네 아무리 물가가...
-
대학
-
확통이고 지금 기출 풀고 있는데 n티켓 사서 푸는 거 어케 생각하시나요 수능 때까지...
-
https://youtu.be/uOnjuIb1TWY?si=mkhq1HA5Mb5O3b9...
-
괜찮음
-
로드리 비니시우스
-
어차피 그럴 가능성은 없을 거지만
-
어디감
-
아직 정규 남았고 선공개 곡임 그동안 지디가 선공개때는 하고싶은거 막던졌음 예를들면...
-
즂댓네.
-
내가 의대갈게
-
저는 군대 다녀온 신촌 y대는 아니고 같은 구역에 있는 s대 다니고 있습니다 제...
-
꿈도 다 좋은 꿈만 꾸고 이번달 운세 개좋은데 올해 진짜 수능판 뜨냐..?
-
이 짓거리 안하고 있었겠지
-
제가 평소에 소화도 잘 안되고 뭐 먹으면 더부룩한데 식곤증도 엄청 심해서 영어 모고...
-
22번찍는거 엄마한테 물어봐야겠노
-
메디컬 집착 4
나도 하는중 크헤헤
-
기숙사 룸메 선택할수잇으면 얌전한애말고 좀 친구많아보이는애랑 하셈 0
이런애들이 놀러다니느라 바빠서 방 안들어옴 친구없고 술안마시고 본가도안가고 방에만...
-
고딩들은 음 그래 나도 일단 들어가서 열심히 하면 전과/복전 가능할거야! 이렇게...
-
대부분 대학생들이 남는시간에 알바처럼 하는거?? 막 한사람이 하루종일 붙어있고 그래야하는건 아니겠지
-
자신있는 과목은 수능때 실수할까봐 불안해죽갰고 영어는 공부한 날이 손에 꼽음 아 진짜ㅏ진짜 ㅈ댔다
-
대충 2주 전부터 1일 1실모 하고 있는데 지구는 38~47 나와요 실수 많이하면...
-
차이점있나요?
-
예전 비문학 초고난도 시절로 돌아가는거임?
-
또 나를 찾지 말고 살아가라
-
제 아이디 입력해주시면 추천해주신 분과 제게 모두 만원권이 증정된다고 합니당 아이디...
-
내맘대로 자대고 4
쭉 긋고 쓰지
-
예쁜여자vs고능아의대생 10
다시 태어나면 뭘로 태어나고 싶음? 후자는 와꾸 빻음
-
헬스터디보면 확통은 맨날 거의다맞추던데 재호가고수인거임 확통이쉬운거임 둘다인건가 신기하네
-
여기있는 현역 혹은 그 이하들이 나보다 잘한다는걸 깨달았을 때
-
수능 국어 기본기 공부는 매3시리즈 국어가 좋음? 원픽이 좋음?
-
ㅇㅇ 연계 독서 중에 그게 제일 꽃같은 친구 같음.
-
양치기소년이 되.
-
국어는 강기분 지금 하고 있구요 수학은 학원+인강으로 병행 합니다 영어 또한...
-
나 이래도 괜찮은걸까
-
2주동안 자살할게 라고 말함 zzzz ???: 이거 비문학이네
-
수과탐에 투자하려는데 주말에 문학 좀 보고
-
저기 지방 ㅈ반고 가면 유학? 의대? 이런 얘기 나오지도 않음
-
글이안읽힘..
-
어차피 평소에 얼마나 어려운 실모를 풀더라도(막 1컷 60점대의 비정상적인 실모만...
사소한 질문인데요, 저 문제는 가형, 나형 중 어디서 나왔나요?
가/나형 공통출제 였습니다.
따라서 이렇게 푸는 것은 당연히 출제의도에 빗나갑니다. 나형 학생들은 이렇게 풀 수가 없으니까요.
하지만 '엄밀하게' 서술하는 연습을 중점에 두고 쓴 글이기 때문에 의의가 있다고 생각합니다.
사소한 지적 하나 하자면, '이를 조금 더 엄밀하게 증명하기 위해서 극한의 가장 기본적인 판정법인 비교 판정법을 통해 확인해보려고 했습니다.'라는 문장에서 '비교 판정법(Comparison Test)'은 무한급수의 수렴을 판정하는 방법입니다. t/e^t의 극한값을 구하는데 사용된 방법은 '샌드위치 정리(Sandwich Theorem)'고요. 그것만 제외하면 잘 쓴 글인 것 같네요. 본받고 싶어요. ㅋㅋ 다음 글 기대하겠습니다!
아.....제가 혼동했나 보네요 ㅠㅠ...지적 감사합니다!
글에 오류가 있어 이를 수정했습니다. 저 극한을 따질 필요가 없었는데 잘못 생각해서 따져버렸네요.....
이 글을 읽고 잘못 받아들이셨다면 이를 바로잡으려고합니다.
오 ㅋㅋ 이런글 좋아요 !!