제 2 교시

2024학년도 수능대비 공통 준킬러 복습

수험 번호

\square

○ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.

- 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

Martin Garrix - High On Life

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 '0'도 답란에 반드시 표시하시오.
\bigcirc 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
\bigcirc 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

- 공통과목

함수 $f(x)=-(x-2)^{2}+k$ 에 대하여 다음 조건을 만족시키는 자연수 n 의 개수가 2 일 때, 상수 k 의 값은?
$\sqrt{3^{f(n)}}$ 의 네제곱근 중 실수인 것을 모두 곱한 값이 -9 이다.

- MEMO

- 쓰인 개념 정리

(가) $3^{a}=5^{b}=k^{c}$
(나) $\log c=\log (2 a b)-\log (2 a+b)$

- MEMO

- 쓰인 개념 정리

두 상수 $a, b(1<a<b)$ 에 대하여 좌표평면 위의 두 점
$\left(a, \log _{2} a\right),\left(b, \log _{2} b\right)$ 를 지나는 직선의 y 절편과 두 점 $\left(a, \log _{4} a\right),\left(b, \log _{4} b\right)$ 를 지나는 직선의 y 절편이 같다.
함수 $f(x)=a^{b x}+b^{a x}$ 에 대하여 $f(1)=40$ 일 때, $f(2)$ 의 값은?

- MEMO

- 쓰인 개념 정리

자연수 n 에 대하여 $4 \log _{64}\left(\frac{3}{4 n+16}\right)$ 의 값이 정수가 되도록 하는 1000 이하의 모든 n 의 값의 합을 구하시오.

- MEMO

- 쓰인 개념 정리

그림과 같이 곡선 $y=2^{x-m}+n(m>0, n>0)$ 과 직선 $y=3 x$ 가 서로 다른 두 점 A, B 에서 만날 때, 점 B 를 지나며 직선 $y=3 x$ 에 수직인 직선이 y 축과 만나는 점을 C 라 하자. 직선 CA 가 x 축과 만나는 점을 D 라 하면 점 D 는 선분 CA 를 $5: 3$ 으로 외분하는 점이다. 삼각형 ABC 의 넓이가 20 일 때, $m+n$ 의 값을 구하시오. (단, 점 A 의 x 좌표는 점 B 의 x 좌표보다 작다.)

- MEMO

- 쓰인 개념 정리

그림과 같이 곡선 $y=2^{x}$ 위에 두 점 $\mathrm{P}\left(a, 2^{a}\right), \mathrm{Q}\left(b, 2^{b}\right)$ 이 있다. 직선 PQ 의 기울기를 m 이라 할 때, 점 P 를 지나며 기울기가 $-m$ 인 직선이 x 축, y 축과 만나는 점을 각각 A, B 라 하고, 점 Q 를 지나며 기울기가 $-m$ 인 직선이 x 축과 만나는 점을 C 라 하자.
$\overline{\mathrm{AB}}=4 \overline{\mathrm{~PB}}, \quad \overline{\mathrm{CQ}}=3 \overline{\mathrm{AB}}$
일 때, $90 \times(a+b)$ 의 값을 구하시오. (단, $0<a<b$)

- MEMO

- 쓰인 개념 정리

두 자연수 a, b 에 대하여 함수

$$
f(x)= \begin{cases}2^{x+a}+b & (x \leq-8) \\ -3^{x-3}+8 & (x>-8)\end{cases}
$$

240914
이 다음 조건을 만족시킬 때, $a+b$ 의 값은?
집합 $\{f(x) \mid x \leq k\}$ 의 원소 중 정수인 것의 개수가 2 가 되도록 하는 모든 실수 k 의 값의 범위는 $3 \leq k<4$ 이다.

- MEMO

- 쓰인 개념 정리

$a>1$ 인 실수 a 에 대하여 직선 $y=-x+4$ 가 두 곡선

$$
y=a^{x-1}, y=\log _{a}(x-1)
$$

과 만나는 점을 각각 A, B 라 하고, 곡선 $y=a^{x-1}$ 이 y 축과 만나는 점을 C 라 하자. $\overline{\mathrm{AB}}=2 \sqrt{2}$ 일 때, 삼각형 ABC 의 넓이는 S 이다.
220921 $50 \times S$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

실수 t 에 대하여 두 곡선 $y=t-\log _{2} x$ 와 $y=2^{x-t}$ 이 만나는 점의 x 좌표를 $f(t)$ 라 하자. <보기>의 각 명제에 대하여 다음 규칙에 따라 A, B, C 의 값을 정할 때, $A+B+C$ 의 값을 구하시오. (단, $A+B+C \neq 0$)

- 명제 ㄱㅇㅣ 참이면 $A=100$, 거짓이면 $A=0$ 이다.
- 명제 ㄴㅇㅣ 참이면 $B=10$, 거짓이면 $B=0$ 이다.
- 명제 ㄷㅇㅣ 참이면 $C=1$, 거짓이면 $C=0$ 이다.

ㄱ. $f(1)=1$ 이고 $f(2)=2$ 이다.
ㄴ. 실수 t 의 값이 증가하면 $f(t)$ 의 값도 증가한다.
ㄷ. 모든 양의 실수 t 에 대하여 $f(t) \geq t$ 이다.

- MEMO

- 쓰인 개념 정리

두 함수

$$
f(x)=x^{2}+a x+b, g(x)=\sin x
$$

230313
가 다음 조건을 만족시킬 때, $f(2)$ 의 값은?
(단, a, b 는 상수이고, $0 \leq x<2$ 이다.)
(가) $\{g(a \pi)\}^{2}=1$
(나) $0 \leq x \leq 2 \pi$ 일 때, 방정식 $f(g(x))=0$ 의 모든 해의 합은 $\frac{5}{2} \pi$ 이다.

- MEMO

- 쓰인 개념 정리

$$
\begin{gathered}
0 \leq x \leq 2 \pi \text { 일 때, 부등식 } \\
\cos x \leq \sin \frac{\pi}{7}
\end{gathered}
$$

240909 를 만족시키는 모든 x 의 값의 범위는 $\alpha \leq x \leq \beta$ 이다. $\beta-\alpha$ 의 값은?

- MEMO

- 쓰인 개념 정리

다음 그림과 같이 닫힌구간 $[0,2 \pi]$ 에서 정의된 두 함수 $f(x)=k \sin x$, $g(x)=\cos x$ 에 대하여 곡선 $y=f(x)$ 와 곡선 $y=g(x)$ 가 만나는 서로 다른 두 점을 A, B 라 하자. 선분 AB 를 $3: 1$ 로 외분하는 점을 C 라 할 때, 점 C 는 곡선 $y=f(x)$ 위에 있다. 점 C 를 지나고 y 축에 평행한 직선이 곡선 $y=g(x)$ 와 만나는 점을 D 라 할 때, 삼각형 BCD 의 넓이는? (단, k 는 양수이고, 점 B 의 x 좌표는 점 A 의 x 좌표보다 크다.)

- MEMO

- 쓰인 개념 정리

$$
\left(\sin \frac{\pi x}{2}-t\right)\left(\cos \frac{\pi x}{2}-t\right)=0
$$

220615 의 실근 중에서 집합 $\{x \mid 0 \leq x<4\}$ 에 속하는 가장 작은 값을 $\alpha(t)$, 가장 큰 값을 $\beta(t)$ 라 하자. 〈보기〉에서 옳은 것만을 있는 대로 고른 것은?
<보 기>
ᄀ. $-1 \leq t<0$ 인 모든 실수 t 에 대하여 $\alpha(t)+\beta(t)=5$ 이다.
ㄴ. $\{t \mid \beta(t)-\alpha(t)=\beta(0)-\alpha(0)\}=\left\{t \left\lvert\, 0 \leq t \leq \frac{\sqrt{2}}{2}\right.\right\}$
ㄷ. $\alpha\left(t_{1}\right)=\alpha\left(t_{2}\right)$ 인 두 실수 t_{1}, t_{2} 에 대하여 $t_{2}-t_{1}=\frac{1}{2}$ 이면

$$
t_{1} \times t_{2}=\frac{1}{3} \text { 이다. }
$$

- MEMO

- 쓰인 개념 정리

그림과 같이 $\overline{\mathrm{AB}}=4, \overline{\mathrm{AC}}=5$ 이고 $\cos (\angle \mathrm{BAC})=\frac{1}{8}$ 인 삼각형 ABC 가 있다. 선분 AC 위의 점 D 와 선분 BC 위의 점 E 에 대하여

$$
\angle \mathrm{BAC}=\angle \mathrm{BDA}=\angle \mathrm{BED}
$$

일 때, 선분 DE 의 길이는?

220612

- MEMO

- 쓰인 개념 정리

그림과 같이 선분 AB 를 지름으로 하는 반원의 호 AB 위에 두 점 C, D 가 있다. 선분 AB 의 중점 O 에 대하여 두 선분 AD, CO 가 점 E 에서 만나고,

$$
\overline{\mathrm{CE}}=4, \quad \overline{\mathrm{ED}}=3 \sqrt{2}, \quad \angle \mathrm{CEA}=\frac{3}{4} \pi
$$

이다. $\overline{\mathrm{AC}} \times \overline{\mathrm{CD}}$ 의 값은?

- MEMO

- 쓰인 개념 정리

그림과 같이 사각형 ABCD 가 한 원에 내접하고

$$
\overline{\mathrm{AB}}=5, \overline{\mathrm{AC}}=3 \sqrt{5}, \overline{\mathrm{AD}}=7, \quad \angle \mathrm{BAC}=\angle \mathrm{CAD}
$$ 일 때, 이 원의 반지름의 길이는?

231110

- MEMO

- 쓰인 개념 정리

17
그림과 같이 한 평면 위에 있는 두 삼각형 $\mathrm{ABC}, \mathrm{ACD}$ 의 외심을 각각 O , O^{\prime} 이라 하고 $\angle \mathrm{ABC}=\alpha, \angle \mathrm{ADC}=\beta$ 라 할 때,

$$
\frac{\sin \beta}{\sin \alpha}=\frac{3}{2}, \cos (\alpha+\beta)=\frac{1}{3}, \overline{\mathrm{OO}^{\prime}}=1
$$

22예시21
이 성립한다. 삼각형 ABC 의 외접원의 넓이가 $\frac{q}{p} \pi$ 일 때, $p+q$ 의 값을 구하시오. (단, p 와 q 는 서로소인 자연수이다.)

- MEMO

- 쓰인 개념 정리

그림과 같이 평행사변형 ABCD 가 있다. 점 A 에서 선분 BD 에 내린 수선의 발을 E 라 하고, 직선 CE 가 선분 AB 와 만나는 점을 F 라 하자.
$\cos (\angle \mathrm{AFC})=\frac{\sqrt{10}}{10}, \overline{\mathrm{EC}}=10$ 이고 삼각형 CDE 의 외접원의 반지름의 길이가 $5 \sqrt{2}$ 일 때, 삼각형 AFE 의 넓이는?

- MEMO

- 쓰인 개념 정리

$a_{2}=-4$ 이고 공차가 0 이 아닌 등차수열 $\left\{a_{n}\right\}$ 에 대하여 수열 $\left\{b_{n}\right\}$ 을 $b_{n}=a_{n}+a_{n+1}(n \geq 1)$ 이라 하고,
두 집합 A, B 를
240612

$$
A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}, B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}
$$

라 하자. $n(A \cap B)=3$ 이 되도록 하는 모든 수열 $\left\{a_{n}\right\}$ 에 대하여 a_{20} 의 값의 합은?

- MEMO

- 쓰인 개념 정리

첫째항이 양수인 등차수열 $\left\{a_{n}\right\}$ 의 첫째항부터
제 n 항까지의 합을 S_{n} 이라 하자.

$$
\left|S_{3}\right|=\left|S_{6}\right|=\left|S_{11}\right|-3
$$

220313
을 만족시키는 모든 수열 $\left\{a_{n}\right\}$ 의 첫째항의 합은?

- MEMO

- 쓰인 개념 정리

공차가 3 인 등차수열 $\left\{a_{n}\right\}$ 이 다음 조건을 만족시킬 때, a_{10} 의 값은?
(가) $a_{5} \times a_{7}<0$
(나) $\sum_{k=1}^{6}\left|a_{k+6}\right|=6+\sum_{k=1}^{6}\left|a_{2 k}\right|$

- MEMO

- 쓰인 개념 정리

첫째항이 2 이고 공비가 정수인 등비수열 $\left\{a_{n}\right\}$ 과 자연수 m 이 다음 조건을 만족시킬 때, a_{m} 의 값을 구하시오.
(가) $4<a_{2}+a_{3} \leq 12$
200618
(나) $\sum_{k=1}^{m} a_{k}=122$

- MEMO

- 쓰인 개념 정리

첫째항이 -45 이고 공차가 d 인 등차수열 $\left\{a_{n}\right\}$ 이 다음 조건을 만족시키도록 하는 모든 자연수 d 의 값의 합은?
(가) $\left|a_{m}\right|=\left|a_{m+3}\right|$ 인 자연수 m 이 존재한다.
(나) 모든 자연수 n 에 대하여 $\sum_{k=1}^{n} a_{k}>-100$ 이다.

- MEMO

- 쓰인 개념 정리

수열 $\left\{a_{n}\right\}$ 이 다음 조건을 만족시킨다.
(가) 모든 자연수 k 에 대하여 $a_{4 k}=r^{k}$ 이다.
(단, r 는 $0<|r|<1$ 인 상수이다.)
230915
(나) $a_{1}<0$ 이고, 모든 자연수 n 에 대하여

$$
a_{n+1}=\left\{\begin{array}{ll}
a_{n}+3 & \left(\left|a_{n}\right|<5\right) \\
-\frac{1}{2} a_{n} & \left(\left|a_{n}\right| \geq 5\right)
\end{array}\right. \text { 이다. }
$$

$\left|a_{m}\right| \geq 5$ 를 만족시키는 100 이하의 자연수 m 의 개수를 p 라 할 때, $p+a_{1}$ 의 값은?

- MEMO

- 쓰인 개념 정리

자연수 k 에 대하여 다음 조건을 만족시키는 수열 $\left\{a_{n}\right\}$ 이 있다.
$a_{1}=k$ 이고, 모든 자연수 n 에 대하여

$$
a_{n+1}= \begin{cases}a_{n}+2 n-k & \left(a_{n} \leq 0\right) \\ a_{n}-2 n-k & \left(a_{n}>0\right)\end{cases}
$$

이다.
$a_{3} \times a_{4} \times a_{5} \times a_{6}<0$ 이 되도록 하는 모든 k 의 값의 합은?

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 에 대하여 함수 $g(x)$ 를

$$
g(x)= \begin{cases}\frac{f(x+3)\{f(x)+1\}}{f(x)} & (f(x) \neq 0) \\ 3 & (f(x)=0)\end{cases}
$$

이라 하자. $\lim _{x \rightarrow 3} g(x)=g(3)-1$ 일 때, $g(5)$ 의 값은?

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 이고 다음 조건을 만족시키는 모든 삼차함수 $f(x)$ 에 대하여 $f(5)$ 의 최댓값을 구하시오.
(가) $\lim _{x \rightarrow 0} \frac{|f(x)-1|}{x}$ 의 값이 존재한다.
(나) 모든 실수 x 에 대하여 $x f(x) \geq-4 x^{2}+x$ 이다.

- MEMO

- 쓰인 개념 정리

실수 k 와 함수

$$
f(x)= \begin{cases}2^{x-2} & (x<2) \\ 2^{-x+2} & (x \geq 2)\end{cases}
$$

190930
(고2)
에 대하여 함수 $g(x)$ 를 $g(x)=|f(x)-k|+k$ 라 하자. 직선 $y=2 k$ 와 함수 $y=g(x)$ 의 그래프가 만나는 점의 개수를 $h(k)$ 라 할 때,
$\lim _{k \rightarrow \frac{1}{4}-}\left\{h(k) h\left(k+\frac{1}{4}\right)\right\}$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

실수 전체의 집합에서 연속인 함수 $f(x)$ 가 모든 실수 x 에 대하여

$$
\{f(x)\}^{3}-\{f(x)\}^{2}-x^{2} f(x)+x^{2}=0
$$

221112
을 만족시킨다. 함수 $f(x)$ 의 최댓값이 1 이고 최솟값이 0 일 때, $f\left(-\frac{4}{3}\right)+f(0)+f\left(\frac{1}{2}\right)$ 의 값은?

- MEMO

- 쓰인 개념 정리

함수

$$
f(x)=\left\{\begin{array}{cc}
a x+b & (x<1) \\
c x^{2}+\frac{5}{2} x & (x \geq 1)
\end{array}\right.
$$

이 실수 전체의 집합에서 연속이고 역함수를 갖는다. 함수 $y=f(x)$ 의 그래프와 역함수 $y=f^{-1}(x)$ 의 그래프의 교점의 개수가 3 이고, 그 교점의 x 좌표가 각각 $-1,1,2$ 일 때, $2 a+4 b-10 c$ 의 값을 구하시오. (단, a, b, c 는 상수이다.)

- MEMO

- 쓰인 개념 정리

다항함수 $f(x)$ 에 대하여 함수 $g(x)$ 를 다음과 같이 정의한다.

$$
g(x)= \begin{cases}x & (x<-1 \text { 또는 } x>1) \\ f(x) & (-1 \leq x \leq 1)\end{cases}
$$

231114
함수 $h(x)=\lim _{t \rightarrow 0+} g(x+t) \times \lim _{t \rightarrow 2+} g(x+t)$ 에 대하여 〈보기〉에서 옳은 것만을 있는 대로 고른 것은?

ㄱ. $h(1)=3$
ㄴ. 함수 $h(x)$ 는 실수 전체의 집합에서 연속이다.
ㄷ. 함수 $g(x)$ 가 닫힌구간 $[-1,1]$ 에서 감소하고 $g(-1)=-2$ 이면 함수 $h(x)$ 는 실수 전체의 집합에서 최솟값을 갖는다.

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 와 최고차항의 계수가 2 인 이차함 수 $g(x)$ 가 다음 조건을 만족시킨다.
(가) $f(\alpha)=g(\alpha)$ 이고 $f^{\prime}(\alpha)=g^{\prime}(\alpha)=-16$ 인 실수 α 가 존재한다.
(나) $f^{\prime}(\beta)=g^{\prime}(\beta)=16$ 인 실수 β 가 존재한다.
$g(\beta+1)-f(\beta+1)$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

함수

$$
f(x)=\frac{1}{3} x^{3}-k x^{2}+1 \quad(k>0 \text { 인 상수 })
$$

180620
의 그래프 위의 서로 다른 두 점 A, B 에서의 접선 l, m 의 기울기가 모두 $3 k^{2}$ 이다. 곡선 $y=f(x)$ 에 접하고 x 축에 평행한 두 직선과 접선 l, m 으로 둘러싸인 도형의 넓이가 24 일 때, k 의 값은?

- MEMO

- 쓰인 개념 정리

정수 $a(a \neq 0)$ 에 대하여 함수 $f(x)$ 를

$$
f(x)=x^{3}-2 a x^{2}
$$

이라 하자. 다음 조건을 만족시키는 모든 정수 k 의 값의 곱이 -12 가 되도록 하는 a 에 대하여 $f^{\prime}(10)$ 의 값을 구하시오.

$$
\text { 함수 } f(x) \text { 에 대하여 }
$$

$$
\left\{\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}\right\} \times\left\{\frac{f\left(x_{2}\right)-f\left(x_{3}\right)}{x_{2}-x_{3}}\right\}<0
$$

을 만족시키는 세 실수 x_{1}, x_{2}, x_{3} 이 열린구간 $\left(k, k+\frac{3}{2}\right)$ 에 존재한다.

- MEMO

- 쓰인 개념 정리

함수 $f(x)$ 는 최고차항의 계수가 1 인 삼차함수이고, 함수 $g(x)$ 는 일차함수이다. 함수 $h(x)$ 를

$$
h(x)=\left\{\begin{array}{cc}
|f(x)-g(x)| & (x<1) \\
f(x)+g(x) & (x \geq 1)
\end{array}\right.
$$

이라 하자. 함수 $h(x)$ 가 실수 전체의 집합에서 미분가능하고, $h(0)=0$, $h(2)=5$ 일 때, $h(4)$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 에 대하여 함수

$$
g(x)=f(x-3) \times \lim _{h \rightarrow 0+} \frac{|f(x+h)|-|f(x-h)|}{h}
$$

220922
가 다음 조건을 만족시킬 때, $f(5)$ 의 값을 구하시오.
(가) 함수 $g(x)$ 는 실수 전체의 집합에서 연속이다.
(나) 방정식 $g(x)=0$ 은 서로 다른 네 실근 $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ 를 갖고 $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=7$ 이다.

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 이고 $f(0)=\frac{1}{2}$ 인 삼차함수 $f(x)$ 에 대하여 함수 $g(x)$ 를

$$
g(x)= \begin{cases}f(x) & (x<-2) \\ f(x)+8 & (x \geq-2)\end{cases}
$$

라 하자. 방정식 $g(x)=f(-2)$ 의 실근이 2 뿐일 때, 함수 $f(x)$ 의 극댓값은?

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1인 사차함수 $f(x)$ 와 실수 t 에 대하여 구간 $(-\infty, t]$ 에서 함수 $f(x)$ 의 최솟값을 m_{1} 이라 하고, 구간 $[t, \infty)$ 에서 함수 $f(x)$ 의 최솟값을 m_{2} 라 할 때,

$$
g(t)=m_{1}-m_{2}
$$

라 하자. $k>0$ 인 상수 k 와 함수 $g(t)$ 가 다음 조건을 만족시킨다.

$$
\begin{aligned}
& g(t)=k \text { 를 만족시키는 모든 실수 } t \text { 의 값의 집합은 } \\
& \{t \mid 0 \leq t \leq 2\} \text { 이다. }
\end{aligned}
$$

$g(4)=0$ 일 때, $k+g(-1)$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

함수 $f(x)=\frac{1}{2} x^{3}-\frac{9}{2} x^{2}+10 x$ 에 대하여 x 에 대한 방정식

$$
f(x)+|f(x)+x|=6 x+k
$$

220920
의 서로 다른 실근의 개수가 4 가 되도록 하는 모든 정수 k 의 값의 합을 구하시오.

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 양수인 삼차함수 $f(x)$ 가 다음 조건을 만족시킨다.
(가) 방정식 $f(x)-x=0$ 의 서로 다른 실근의 개수는 2 이다.
(나) 방정식 $f(x)+x=0$ 의 서로 다른 실근의 개수는 2 이다.
$f(0)=0, f^{\prime}(1)=1$ 일 때, $f(3)$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 에 대하여 함수 $g(x)$ 를

$$
g(x)=f(x)+\left|f^{\prime}(x)\right|
$$

라 할 때, 두 함수 $f(x), g(x)$ 가 다음 조건을 만족시킨다.
(가) $f(0)=g(0)=0$
(나) 방정식 $f(x)=0$ 은 양의 실근을 갖는다.
(다) 방정식 $|f(x)|=4$ 의 서로 다른 실근의 개수는 3 이다.
$g(3)$ 의 값은?

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 이고 $x=3$ 에서 극댓값 8 을 갖는 삼차함수 $f(x)$ 가 있다. 실수 t 에 대하여 함수 $g(x)$ 를

$$
g(x)= \begin{cases}f(x) & (x \geq t) \\ -f(x)+2 f(t) & (x<t)\end{cases}
$$

230922
라 할 때, 방정식 $g(x)=0$ 의 서로 다른 실근의 개수를 $h(t)$ 라 하자. 함수 $h(t)$ 가 $t=a$ 에서 불연속인 a 의 값이 두 개일 때, $f(8)$ 의 값을 구하시오.

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 가 모든 실수 x 에 대하여 $f(-x)=-f(x)$ 를 만족시킨다. 양수 t 에 대하여 좌표평면 위의 네 점 $(t, 0),(0,2 t),(-t, 0),(0,-2 t)$ 를 꼭짓점으로 하는 마름모가 곡선 $y=f(x)$ 와 만나는 점의 개수를 $g(t)$ 라 할 때, 함수 $g(t)$ 는 $t=\alpha$,
230420 $t=8$ 에서 불연속이다. $\alpha^{2} \times f(4)$ 의 값을 구하시오.
(단, α 는 $0<\alpha<8$ 인 상수이다.)

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 와 최고차항의 계수가 -1 인 이차함수 $g(x)$ 가 다음 조건을 만족시킨다.
(가) 곡선 $y=f(x)$ 위의 점 $(0,0)$ 에서의 접선과 곡선 $y=g(x)$ 위의 점 $(2,0)$ 에서의 접선은 모두 x 축이다.
(나) 점 $(2,0)$ 에서 곡선 $y=f(x)$ 에 그은 접선의 개수는 2 이다.
(다) 방정식 $f(x)=g(x)$ 는 오직 하나의 실근을 가진다.
$x>0$ 인 모든 실수 x 에 대하여

$$
g(x) \leq k x-2 \leq f(x)
$$

를 만족시키는 실수 k 의 최댓값과 최솟값을 각각 α, β 라 할 때. $\alpha-\beta=a+b \sqrt{2}$ 이다. $a^{2}+b^{2}$ 의 값을 구하시오.
(단, a, b 는 유리수이다.)

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 이차함수 $f(x)$ 에 대하여 함수

$$
g(x)=\int_{0}^{x} f(t) d t
$$

240620
가 다음 조건을 만족시킬 때, $f(9)$ 의 값을 구하시오.
$x \geq 1$ 인 모든 실수 x 에 대하여 $g(x) \geq g(4)$ 이고 $|g(x)| \geq|g(3)|$ 이다.

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 1 인 사차함수 $f(x)$ 의 도함수 $f^{\prime}(x)$ 에 대하여 방정식 $f^{\prime}(x)=0$ 의 서로 다른 세 실근 $\alpha, 0, \beta(\alpha<0<\beta)$ 가 이 순서대로 등차수열을 이룰 때, 함수 $f(x)$ 는 다음 조건을 만족시킨다.
(가) 방정식 $f(x)=9$ 는 서로 다른 세 실근을 갖는다.
(나) $f(\alpha)=-16$
함수 $g(x)=\left|f^{\prime}(x)\right|-f^{\prime}(x)$ 에 대하여 $\int_{0}^{10} g(x) d x$ 의 값은?

- MEMO

- 쓰인 개념 정리

최고차항의 계수가 양수인 이차함수 $f(x)$ 가 다음 조건을 만족시킨다.
(가) 모든 실수 t 에 대하여

$$
\int_{0}^{t} f(x) d x=\int_{2 a-t}^{2 a} f(x) d x \text { 이다. }
$$

(나) $\int_{a}^{2} f(x) d x=2, \int_{a}^{2}|f(x)| d x=\frac{22}{9}$
$f(k)=0$ 이고 $k<a$ 인 실수 k 에 대하여 $\int_{k}^{2} f(x) d x=\frac{q}{p}$ 이다.
$p+q$ 의 값을 구하시오.
(단, a 는 상수이고, p 와 q 는 서로소인 자연수이다.)

- MEMO

- 쓰인 개념 정리

실수 a 와 함수 $f(x)=x^{3}-12 x^{2}+45 x+3$ 에 대하여 함수

$$
g(x)=\int_{a}^{x}\{f(x)-f(t)\} \times\{f(t)\}^{4} d t
$$

가 오직 하나의 극값을 갖도록 하는 모든 a 의 값의 합을 구하시오.

- MEMO

- 쓰인 개념 정리

49

231112

실수 전체의 집합에서 연속인 함수 $f(x)$ 가 다음 조건을 만족시킨다.
$n-1 \leq x<n$ 일 때, $|f(x)|=|6(x-n+1)(x-n)|$ 이다.
(단, n 은 자연수이다.)
열린구간 $(0,4)$ 에서 정의된 함수

$$
g(x)=\int_{0}^{x} f(t) d t-\int_{x}^{4} f(t) d t
$$

가 $x=2$ 에서 최솟값 0 을 가질 때, $\int_{\frac{1}{2}}^{4} f(x) d x$ 의 값은?

- MEMO

- 쓰인 개념 정리

두 다항함수 $f(x), g(x)$ 에 대하여 $f(x)$ 의 한 부정적분을 $F(x)$ 라 하고 $g(x)$ 의 한 부정적분을 $G(x)$ 라 할 때,
이 함수들은 모든 실수 x 에 대하여 다음 조건을 만족시킨다.
(가) $\int_{1}^{x} f(t) d t=x f(x)-2 x^{2}-1$
(나) $f(x) G(x)+F(x) g(x)=8 x^{3}+3 x^{2}+1$
$\int_{1}^{3} g(x) d x$ 의 값을 구하시오.

공통 파이널 준킬러 답지

$$
\mathbf{p i =}=\pi, \mathbf{a} / \mathbf{b}=\frac{a}{b}, \mathbf{s q r} \mathbf{t}=\sqrt[2]{ }
$$

1. 9
2. 75
3. 800
4. 426
5. 13
6. 220
7. 13
8. 192
9. 110
10. $9 / 2$
11. $9 \mathrm{pi} / 7$
12. (sqrt5)pi/4
13. ᄀ, ᄂ
14. $8 / 3$
15. 20sqrt2
16. (5sqrt2)/2
17. 26
18. 20/3
19. 46
20. 31/5
21. 23/2
22. 162
23. 48
24. 12
25. 14
26. 20
27. 226
28. 4
29. 3/2
30. 20
31. 7
32. 243
33. 3/2
34. 380
35. 39
36. 108
37. 4
38. 82
39. 21
40. 51
41. 9
42. 58
43. 240
44. 5
45. 39
46. 50
47. 25
48. 8
49. $-1 / 2$
50. 10
