## 제 2 교시

## 2024학년도 SM모의고사 0회 문제지 수학 영역

## 짝수형

성명

| 수험 번호 |  |  | - |  |
| :--- | :--- | :--- | :--- | :--- |

$\bigcirc$ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
○ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

## 먼 대지 위를 달리는 사나운 말처럼

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형 (홀수/짝수), 답을 정확히 표시하시오.
$O$ 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
$\bigcirc$ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.

O 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.
$\bigcirc$ 공통과목
$\bigcirc$ 선택과목

| 확률과 | 9~12 쪽 |
| :---: | :---: |
| 미적분 | $13 \sim 16$ 쪽 |
| 기하 | 17~20 쪽 |

※ 시험이 시작될 때까지 표지를 넘기지 마십시오.

## TEAM SnuMath

## 5지선다형

1. $\left(4^{1+\sqrt{5}}\right)^{\frac{1}{\sqrt{5}}} \times\left(\frac{1}{2}\right)^{2+\frac{2}{\sqrt{5}}}$ 의 값은? [2점]
(1) 1
(2) 2
(3) 4
(4) 8
(5) 16
2. 첫째항이 음수인 등차수열 $\left\{a_{n}\right\}$ 에 대하여

$$
\frac{a_{5}}{a_{3}}=3, \quad a_{4} \times a_{7}=40
$$

일 때, $a_{8}$ 의 값은? [3점]
(1) 8
(2) 9
(3) 10
(4) 11
(5) 12
2. $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{2 x-6}$ 의 값은? [2점]
(1) 1
(2) $\frac{3}{2}$
(3) 2
(4) $\frac{5}{2}$
(5) 3
4. 다항함수 $f(x)$ 에 대하여 함수 $g(x)$ 를

$$
g(x)=\left(x^{2}+3 x\right) f(x)
$$

라 하자. $f(4)=2, f^{\prime}(4)=-1$ 일 때, $g^{\prime}(4)$ 의 값은? [3점]
(1) -10
(2) -8
(3) -6
(4) -4
(5) -2
5. $\cos \theta<0$ 이고 $\cos \left(\theta-\frac{3 \pi}{2}\right)=\frac{\sqrt{7}}{5}$ 일 때, $\tan \theta$ 의 값은? [3점]
(1) $-\frac{\sqrt{14}}{6}$
(2) $-\frac{\sqrt{14}}{4}$
(3) 0
(4) $\frac{\sqrt{14}}{4}$
(5) $\frac{\sqrt{14}}{6}$
6. 함수 $f(x)=-x^{3}+7 x^{2}+5 x+a$ 가 $x=b$ 에서 극댓값 25 를 가질 때, $\frac{a}{b}$ 의 값은? [3점]
(1) -10
(2) -8
(3) -6
(4) -4
(5) -2
7. 수열 $\left\{a_{n}\right\}$ 은 모든 항이 양수이고, 모든 자연수 $n$ 에 대하여

$$
\sum_{k=1}^{n} \log _{2} a_{k}=n^{2}+n+1
$$

이다. $a_{1}+\frac{a_{11}}{a_{10}}$ 의 값은? [3점]
(1) 10
(2) 12
(3) 14
(4) 16
(5) 18
8. 점 $(1,5)$ 를 지나는 직선이 곡선 $y=x^{4}-2 x^{2}+3 x+3$ 과 서로 다른 두 점에서 접할 때, 두 접점 사이의 거리는? [3점]
(1) $\sqrt{34}$
(2) 6
(3) $\sqrt{38}$
(4) $2 \sqrt{10}$
(5) $\sqrt{42}$
9. $0<b<\pi$ 인 실수 $b$ 에 대하여 함수

$$
f(x)=2 \sin (a x-b)+1
$$

가 닫힌구간 $\left[\frac{\pi}{2}, \pi\right]$ 에서 최댓값 3 , 최솟값 -1 을 갖는다. 양수 $a$ 의 값이 최소일 때, $b$ 의 값은? [4점]
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{2}$
(4) $\frac{2}{3} \pi$
(5) $\frac{3}{4} \pi$
10. 실수 $k$ 에 대하여 수직선 위의 점 $\mathrm{A}(1)$ 에서 출발한 점 P 의 시각 $t(t \geq 0)$ 에서의 속도가

$$
v(t)=t^{3}-3 t^{2}+k
$$

이고, 점 P 는 출발 후 운동 방향을 바꾸지 않는다. 시각 $t$ 에서의 점 P 의 위치를 $x(t)$ 라 할 때, $x(4)$ 의 최솟값은? [4점]
(1) 16
(2) 17
(3) 18
(4) 19
(5) 20
11. 그림과 같은 등변사다리꼴 ABCD 가

$$
\cos (\angle \mathrm{BCD})=\frac{\sqrt{5}}{5}, \quad 5 \overline{\mathrm{AD}}=3 \overline{\mathrm{BC}}
$$

를 만족시킨다. 삼각형 ABD 에 외접하는 원의 넓이가 $25 \pi$ 일 때, 사각형 ABCD 의 넓이는? [4점]

(1) 8
(2) 16
(3) 24
(4) 32
(5) 40
12. 최고차항의 계수가 양수인 삼차함수 $f(x)$ 가 다음 조건을 만족시킨다.
(가) 양수 $t$ 에 대하여 $x$ 에 대한 방정식

$$
\{f(x)\}^{2}+4 f(x)-t^{2}+4=0
$$

의 서로 다른 실근의 개수를 $g(t)$ 라 하면, 함수 $g(t)$ 는 오직 $t=3$ 에서만 불연속이다.
(나) 방정식 $f(x)=f(x+b)$ 의 실근이 존재하도록 하는 양수 $b$ 의 최댓값이 $4 \sqrt{3}$ 이고, 이때의 실근은 $-2 \sqrt{3}$ 이다.
$g(3)=4$ 일 때, $f(8)$ 의 값은? [4점]
(1) 72
(2) 76
(3) 80
(4) 84
(5) 88
13. 자연수 $n$ 에 대하여 $x$ 에 대한 방정식

$$
\left(x^{n}+n\right)\left(x^{n}+n-1\right)\left(x^{n}+n-2\right) \cdots\left(x^{n}+n-k\right)=0
$$

의 서로 다른 실근의 개수를 $f(n)$ 이라 할 때, $\sum_{n=1}^{10} f(n)=50$ 이 되도록 하는 자연수 $k$ 의 값은? [4점]
(1) 4
(2) 5
(3) 6
(4) 7
(5) 8
14. 최고차항의 계수가 $p(p<0)$ 인 삼차함수 $f(x)$ 와 최고차항의 계수가 1 인 이차함수 $g(x)$ 가 다음 조건을 만족시킨다.
(가) 두 함수 $f(x)$ 와 $x g(x)$ 는 $x=0$ 에서 각각 극댓값을 갖고, $f(x)$ 의 극솟값과 $x g(x)$ 의 극댓값은 같다.
(나) 함수 $|f(x)|-|x g(x)|$ 가 $x=a$ 에서 미분가능하지 않은 실수 $a$ 의 개수는 1 이하이다.
<보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]
<보 기>
ㄱ. $g^{\prime}(0)<0$
ㄴ. 함수 $|f(x)|-|x g(x)|$ 가 실수 전체의 집합에서 미분가능하도록 하는 $p$ 는 오직 하나 존재한다.

ㄷ. 방정식 $|f(x)|=|x g(x)|$ 의 실근의 개수를 $h(p)$ 라 할 때, 상수 $k$ 에 대하여 함수 $g(p-k) h(p)$ 가 $p<0$ 에서 연속이면 $g(k)=\frac{17}{9}$ 이다.
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄂ
(4) ᄂ, ᄃ
(5) ᄀ, ᄂ, ᄃ
15. 모든 항이 자연수인 수열 $\left\{a_{n}\right\}$ 이 다음 조건을 만족시킬 때, 가능한 모든 $a_{10}$ 의 값의 합은? [4점]
(가) $a_{9}=10$
(나) 모든 자연수 $n$ 에 대하여

$$
a_{n+3}= \begin{cases}2 a_{n+1} & \left(a_{n+1} \text { 은 홀수 }\right) \\ a_{n+1}+a_{n} & \left(a_{n+1} \text { 은 짝수 }\right)\end{cases}
$$

이다.
(1) 21
(2) 23
(3) 25
(4) 27
(5) 29

## 단답형

16. $\log _{3} 72+\frac{3}{\log _{\frac{1}{2}} 3}$ 의 값을 구하시오. [3점]
17. 함수 $f(x)$ 에 대하여

$$
f^{\prime}(x)=4 x(x-3)^{2}, \quad f(0)=0
$$

일 때, $f(3)$ 의 값을 구하시오. [3점]
18. 수열 $\left\{a_{n}\right\}$ 과 등비수열 $\left\{b_{n}\right\}$ 에 대하여

$$
\sum_{k=3}^{12} a_{k}=7, \quad \sum_{k=1}^{10}\left(2 a_{k}+b_{k}\right)=24, \quad \sum_{k=11}^{20}\left(2 a_{k}+b_{k}\right)=44
$$

이다. 수열 $\left\{a_{n}\right\}$ 이 모든 자연수 $n$ 에 대하여 $a_{n}=a_{n+10}$ 을 만족시킬 때, $\sum_{k=31}^{40} b_{k}$ 의 값을 구하시오, [3점]
19. 두 함수 $f(x)=x^{3}-4 x^{2}-5 x-3$ 와 $g(x)=-x^{2}+4 x-k$ 에 대하여 좌표평면 위의 한 점에서 두 함수 $y=f(x), y=g(x)$ 의 그래프와 동시에 접하는 접선이 존재할 때, 양수 $k$ 의 값을 구하시오. [3점]
20. 모든 실수 $x$ 에 대하여 $f^{\prime}(x) \leq 0$ 인 함수 $f(x)$ 가 다음 조건을 만족시킨다.
(가) $\left\{\int_{m}^{m+1} f(x) d x \mid m\right.$ 은 정수 $\}=\{1,2,3\}$
(나) $4 \leq x \leq 5$ 일 때 함수 $f(x)$ 의 그래프는 삼차함수의 그래프의 일부분이다.
$\int_{2}^{9} f(x) d x+f\left(\frac{9}{2}\right)$ 의 값을 구하시오. [4점]
21. 점 $\mathrm{A}(4,0)$ 와 곡선 $y=2^{x}$ 위를 움직이는 점 B 에 대하여 다음 조건을 만족시키도록 점 C 를 잡는다. (단, 점 C 의 $x$ 좌표는 점 A 의 $x$ 좌표보다 작다.)

선분 BC 를 지름으로 하는 원 위의 점 P 에 대하여 삼각형 BCP 의 넓이가 최대가 되도록 하는 점 P 의 좌표가 $(4,0)$ 이다.

세 상수 $a, b, c$ 에 대하여 점 C 가 나타내는 도형의 방정식이 $y=\log _{a}(-x+b)+c$ 일 때, $a^{2}+b^{2}+c^{2}$ 의 값을 구하시오. (단, $a$ 는 1 이 아닌 양수이다.) [4점]
22. 최고차항의 계수가 1 인 삼차함수 $f(x)$ 가 다음 조건을 만족시킬 때, $f(7)$ 의 값을 구하시오. [4점]
(가) $x>k>1$ 인 모든 실수 $x$ 에 대하여 부등식

$$
\frac{f(x)-k}{x-k} \geq \frac{f(x)-1}{x-1}
$$

가 성립하도록 하는 실수 $k$ 의 최솟값은 2 이다.
(나) $f(4)=4$

[^0]제2교시 수하 여ㅇㅕㅕ(미적분)

5 지선다 형
23. $\lim _{x \rightarrow 1} \frac{3^{x-1}-1}{\log _{3} x}$ 의 값은? [2점]
(1) $\frac{1}{(\ln 3)^{2}}$
(2) $\frac{1}{\ln 3}$
(3) 1
(4) $\ln 3$
(5) $(\ln 3)^{2}$
24. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 k}{n^{2}+k^{2}}$ 의 값은? [3점]
(1) $\ln 2-1$
(2) $\ln 2$
(3) $\ln 2+1$
(4) $2 \ln 2$
(5) $2 \ln 2+1$
25. 수열 $\left\{a_{n}\right\}$ 에 대하여

$$
\sum_{n=1}^{\infty}\left\{a_{n}-\frac{8 n^{2}+1}{n^{2}+3 n}\right\}=4
$$

일 때, $\lim _{n \rightarrow \infty} \frac{4^{n+2}-a_{2 n}}{2^{2 n} a_{n}+3^{n}}$ 의 값은? [3점]
(1) $\frac{1}{4}$
(2) $\frac{1}{2}$
(3) 1
(4) 2
(5) 4
26. 그림과 같이 한 변의 길이가 2 인 정삼각형 $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ 과 선분 $\mathrm{B}_{1} \mathrm{C}_{1}$ 을 지름으로 하는 반원 $O_{1}$ 을 그린 후 $A$ 모양의 도형에 색칠하여 얻은 그림을 $R_{1}$ 이라 하자.
그림 $R_{1}$ 에서 선분 $\mathrm{B}_{1} \mathrm{C}_{1}$ 의 수직이등분선이 반원 $O_{1}$ 과 만나는 점을 $\mathrm{A}_{2}$ 라 하고 두 꼭짓점 $\mathrm{B}_{2}, \mathrm{C}_{2}$ 가 선분 $\mathrm{B}_{1} \mathrm{C}_{1}$ 위에 있는 정삼각형 $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ 와 선분 $\mathrm{B}_{2} \mathrm{C}_{2}$ 를 지름으로 하는 반원 $O_{2}$ 를 그린 후 $A$ 모양의 도형에 색칠하여 얻은 그림을 $R_{2}$ 라 하자. 이와 같은 과정을 계속하여 $n$ 번째 얻은 그림 $R_{n}$ 에 색칠되어 있는 부분의 넓이를 $S_{n}$ 이라 할 때, $\lim _{n \rightarrow \infty} S_{n}$ 의 값은? [3점]

(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{2}$
(3) $\frac{3}{4} \pi$
(4) $\pi$
(5) $\frac{5}{4} \pi$
27. 두 실수 $k, t(t>0)$ 에 대하여 원 $x^{2}+y^{2}=t^{2}$ 와 곡선 $y=\frac{1}{x}+k$ 가 항상 접할 때, 제 1 사분면에 있는 접점의 좌표를 $(f(t), g(t))$ 라 하자. 좌표평면 위를 움직이는 점 P 의 시각 $t$ 에서의 좌표가 $(f(t), g(t))$ 이고 시각 $t=\sqrt{2}$ 에서 $t=\sqrt{10}$ 까지 점 P 가 움직인 거리가 곡선 $y=x^{n}(1 \leq x \leq \sqrt{2})$ 의 길이와 같을 때, 자연수 $n$ 의 값은? [3점]
(1) 2
(2) 3
(3) 4
(4) 5
(5) 6
28. 그림과 같이 길이가 2 인 선분 AB 를 지름으로 하는 반원이 있다. 호 AB 위의 점 P 를 $\angle \mathrm{PAB}=\theta$ 가 되도록 잡는다. 점 Q 에서 서로 외접하고 반지름이 같은 두 원 $C_{1}, C_{2}$ 에 대하여 원 $C_{1}$ 은 두 선분 $\mathrm{AP}, \mathrm{AB}$ 와 각각 두 점 $\mathrm{R}, \mathrm{S}$ 에서 접하고, 원 $C_{2}$ 는 선분 AB , 호 BP 와 각각 두 점 $\mathrm{T}, \mathrm{U}$ 에서 접한다. 두 선분 $\mathrm{AR}, \mathrm{AS}$ 와 호 RS 로 둘러싸인 부분의 넓이를 $f(\theta)$, 두 호 $\mathrm{QS}, \mathrm{QT}$ 와 선분 ST 로 둘러싸인 부분의 넓이를 $g(\theta)$ 라 할 때, $\lim _{\theta \rightarrow 0+} \frac{f(\theta) g(\theta)}{\theta^{3}}$ 의 값은? (단, $0<\theta<\frac{\pi}{2}$ ) [4점]

(1) $\frac{1}{2}-\frac{\pi}{8}$
(2) $1-\frac{\pi}{4}$
(3) $2-\frac{\pi}{2}$
(4) $4-\pi$
(5) $8-2 \pi$

## 단답형

29. 열린구간 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 에서 연속이고 이계도함수가 존재하는 함수 $f(x)$ 가 다음을 만족시킨다.
(가) $2 \int f(x) d x=\ln f^{\prime}(x)$
(나) $f(0)=0, f^{\prime}(0)=1$

상수 $a\left(-\frac{\pi}{2}<a<\frac{\pi}{2}\right)$ 에 대하여 $f(a)=4 \sqrt{3}$ 일 때,
$\int_{0}^{a} f(x) \sqrt{f^{\prime}(x)} d x$ 의 값을 구하시오. [4점]
30. 최고차항의 계수가 1 인 이차함수 $f(x)$ 가 다음 조건을 만족시킨다.

곡선 $y=f(x) e^{-x}$ 와 직선 $y=x+t$ 가 접하도록 하는 실수 $t$ 의 값은 오직 $t_{1}$ 뿐이다.
$x$ 에 대한 방정식

$$
f(x)=\left(x+t_{1}\right)\left\{f^{\prime}(x)-f(x)\right\}
$$

의 서로 다른 실근의 개수가 1 일 때, $f(5)$ 의 값을 구하시오.
(단, $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=0$ 이다.) [4점]

[^1]※ 시험이 시작될 때까지 표지를 넘기지 마십시오.


[^0]:    * 확인 사항
    - 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
    - 이어서, 「선택과목(확률과 통계)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

[^1]:    * 확인 사항
    - 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
    - 이어서, 「선택과목(기하)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오

