수학 자작 3문제 심심한 사람 풀어보셈
게시글 주소: https://iu.orbi.kr/0008354037
3번째는 기출 표현바꾸긴데 왠지 오류 있는듯 한 느낌이...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기능장 Vs. 기술사 같은 분야에 대해 기능장 기술사 둘 다는 못 하나
-
질문 : 예비 고3 겨울방학 어떤 모의고사를 풀어야 할까요? 기출을 통해 공부하는...
-
드디어 마음 먹었어
-
....
-
고대 진학사나 코핌 컷 아시는 분 계세요? 경영 정외 행정 국문 역사교육 이렇게...
-
구글에서 교재나 강의 이름을 치고 오르비 or 디시를 뒤에 적고 검색 여러 후기들...
-
고경제쓸걸 0
후..
-
與 미디어특위 "이재명, 정언중(政言中) 커넥션 해명하라…신화통신과 극비회동" 2
[데일리안 = 김민석 기자] 국민의힘 미디어특별위원회가 이재명 더불어민주당 대표의...
-
나 캬소 짝사랑하나봐 10
얼마나 심한 글을 들고 왔을까 늘 기다려져 이제 슬슬 알림창에 ka so jk님이...
-
오늘 뭔 날인가 1
별,,,
-
ㅎㅇ
-
연대는 조발하라 0
조발하라 조발하라
-
……
-
얼버기 0
자는 시간이.. 점점 늘어나는 것 같아..
-
67x들고 고대가기가...
-
왜 경영만 빵이냐? 뒤질래?
-
오늘 티켓팅? 0
애초에 그녀석은 내 목표가 아니었다 ㄹㅇㅋㅋ
-
695도 붙음?
-
~~~ n제 디시 ㅇㅇㅇ(강사) 책(커리) 디시 이렇게치면 조작되지않은 날것의리뷰를 볼수있다
-
그냥 합격증 내려주시면 감사히 받겠습니다 이깟 걸로 징징대지 말고 분에 넘치는 학교...
-
점공보니까 왜 다 떨어질것같지? 개불안한데
-
환승연애 보려고 결제함
-
수학 2025 기준 5등급이면? 기출 킬러 일단 넘겨야 할까요 1
5등급 정도의 실력이면 일단 넘기고 나중에 보아야 할까요..? 계속 이상한 방향으로...
-
부엉이노무귀여워 5
바위에다가 뒤집어서 걸고싶어
-
수학 질문 0
(나) 조건에서 9x제곱이 되는건 아는데 뒤에 ax+b를 놓으면, 루트ax가 분모에...
-
올해 고3이고 중학교 이후로 학원 인강 아무것도 안들어봤음 단어 약하고 문장...
-
667로 잡다가 막판에 664로 내렸음 근데도 65x가 안정인 상황임
-
오랜만에 지구 보는데 12
왤케 까먹은 게 많지
-
대학 교수들 극히 일부 빼곤 체계 없이 횡설수설 하고 가서 머리에 남는거 없어서...
-
설서운이야기 13
진학사는 403에게 설경 4칸 추합을 준 적이 있다
-
지금 알바 월급 밀리는 거 개졷같아서 관둘건데 할만한 알바가 없네
-
민주당이 일반인들 내란선전으로 고소한다니까 이제 민주당 욕함 ㅋㅋㅋㅋ
-
진학사연대컷… 1
초반에 712점에 6칸추합을 줬던 기억이
-
사탐공대도 좀 에바같고…
-
난 수능 100번 봐도 못 가는 곳 의사 선생님 소리 듣고 인생 존나...
-
사문 정법 0
고2 내신때 물화생하고 최저 사탐런한 이과인데 최저 사문 정법 ㄱㅊ음? 정치를...
-
작년에 풀다남은거잇음..
-
미친척하고 한 번 넣어볼 걸 하는 후회도 없진 않지만 스나할 깡이라고는 없는...
-
바론 안된다니까 무조건 된다매 엘리스 씹새야
-
여캐일러 투척 5
음 역시 맛있군
-
단지 원점회귀에 가깝다고 봐야할 것 같네요 통합수학 1등급이 22, 23, 24...
-
수시 탈락자들을 위한 패자부활전 전형
-
알바가 별로 없는것 같기도..
-
뀨뀨 11
뀨우
-
시켜버림..... 여기 매장에서 먹는게 찐인데 배달은 첨시켜보네
-
꼬리 유추 가능
-
하면 서울대 문과 기준 유리할까요 불리할까요 경제 사문 대비
-
이번엔 尹지지율 46%, 질문방식 바꿔도 지지율 40%대 11
[파이낸셜뉴스] 윤석열 대통령 지지율이 46%를 기록했다는 지지율 조사 결과가...
-
통산 내신 총 평균등급:1.15 내신 상세 1학년 선택과목X 1-1학기 국어 2,...
-
케플러 포함 7종류의 과학탐구 그림을 만들어 보았습니다. 그림에서 "평가원스러움"이...
마지막문제 밑에서 4번째줄 이해가...
f (a)가 하나의 상수로 취급해서 k로 치환하면
x=k에서 함숫값=우극한인데 좌극한과는 같지않다
그래프로 표현하면 x<k은 y=0 x>=k 에서는 y=1
요런게 예가 될 수 있겟져
그런거라먄 좌극한부분 g (x)가빠잤네요 그래도 답은 모르겟다는 ㅋㅋ 모든 g (f(x))가 좌극한에서 끊어지는데 a에선 연속이라....
마지막에g•f (t) 함수에서 x=a 일때 연속인데 x가아니라 t인가요?
결국 합성함수 f 에서 g로 가는데 좌극한이 되면안되니 우극한,함숫값으로만 식이 결정되야되고
따라서 f (x)가 x=a에서 좌극한,우극한 취했을때 양쪽에서 둘다 감소하면서 떨어져야 f (a)+가 되요
극솟 값찾는 건데 이차함수 y=x^2에서 원점이 꼭짓점이잖아요 딱 그모양 생각하시면 됨
미적분 안배우셧으면 어려울수 있을듯 함수의 극한같지만 사실 미적분 문제에요
아 13은 12345254321
14는 12345454321 풀었습니다
첫번째문재는 아직 미적분안배워사 패스
네 ㅋㅋ 정답이에여 근데 14번 식 어떻게 세우셨나요? 원래 곱셈정리로 변AB구하고 점~직선으로 높이구하게 하는게 의도 였는데 친구들한테 풀어봐라 하니 다 다르게 풀더라고여..
13번도 계산 안하고 답 바로 보이셧나요?
1사분면 삼각형만봤을때 a3이랑 a4의 중점이 t/2,t/2이므로 원점과 직선사이는 t/2루트2
a3 a4 의 x값차이는 곱셈정리로 구하고 거기에 루트2 곱했네요
13번은 계산안했습니당
네 ㅎㅎ 완벽하게 푸셨네요 난 또 곱셈정리 생각하는게 너무 어려운가 싶었음 ㅋㅋ
역시 오르비가 다 수준이 높아여
맨 처음 문제에 (나)가 성립하려면 g(x)>0에서 항상 감소하고 g(x)<0에서 항상 증가해야하는데 (다) 때문에 그건 불가능 하기 때문에 일일이 넓이를 비교해주란 문제인가요? 출제의도를 잘 모르겠네요
(나)조건 부등식 왼쪽식이 정적분~급수에서 오른쪽 높이잡기 한거고 오른쪽이 정적분이라 정적분이 크려면 감소함수여야 하고
a가 양수만 되니까 x>0에서 g(x)는 감소함수다 라고 이끌어내길 바랐는데여
음..그렇기 할라했으면 부등식에 정적분 구간을 위끝아래끝에 임의의 양수 두개가 다성립한다 라고 해야 맞는건가요
극값이 존재하고 최고차항이 음수인 삼차함수 생각해보면 쭉감소하다가 증가하는 구간에 a가 걸쳐있어도 저 식 만족 할수 있는것 같네요
'임의의 서로다른 두양수 a,b에 대해 a~b까지 오른쪽 높이 잡기 한것보다 인테그랄 a~b가 항상 크면 그함수는 양의실수에서 감소함수이다'
이렇게 표현해야 하나요
일정한 구간에서 저게 성립한다는걸 보여주는게 나을 것 같아요.. 지금 조건 그대로 가면 감소함수라는걸 뽑아낼 수 없어요..