미적분 자작문제
게시글 주소: https://iu.orbi.kr/0008204438
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어제 생일이었음 0
초딩 때는 그냥 선물 받고 부모님이 갖고 싶은 거 사주니까 마냥 좋았음...
-
기차지나간당 0
부지런행
-
오래된 생각이에요
-
얼버기 0
좋은 아침
-
성대 복전 0
확정 점수는 아니지만 가채점 낙지 기준 성대 사회과학이 6칸, 인문과학이 7칸 정도...
-
기상 완료
-
춥고배고프다 2
밥줘...
-
이젠 이시간까지 안자고있네ㅋㅋ
-
밤샘해버렷네 4
으으
-
합격생중에 수리 틀린 경우도 있나요?
-
미친짓이겠죠?
-
심심해서 2
수분감 샀음 공통+미기확 전부 다 심심할 때마다 풀어야지 즐겁다!
-
김동욱쌤 기출 0
일클 + 연필통 하면서 기출까지 같이하려는데 추천하는 기출문제집있나요?
-
아이디드리면핑까해드립니다.
-
셋 중에 누가 제일 노래잘함?
-
삼반수에 대하여 1
(요약 있습니다!) 이건 제 얘기가 아니라 제가 아주 아끼는 친구 얘기입니다 (저는...
-
표점 뭐 134임? ㅋㅋㅋㅋㅋ 납득하기 어려운데
-
지금 일어난 게 아니라 아직 안잔 거임.. 몇주 뒤에 유럽여행 가는데 강제 시차적응 on
-
딱알았다 1
누누로는 골드탈출못한다 내가 무언가 해야하는구나
-
컨설팅 받을까요 5
올해 삼수째고 목표하던 대학 라인이 간당간당한 성적이라 작년 이맘때쯤보다 더...
-
얼버기 2
는 아니고 술먹고 이제 집들어가는중 헤헤
-
잔다 2
르크
-
패턴 정상화 시킨다
-
이러면 무슨 의미가 잇음
-
이주비용 다 갚고 집짓고 그냥 영락없는 한국인이네
-
얼버기 9
-
세상 답도ㅜ없이 문과스런 절 데려가주실 대학은요
-
제가 중학교 과정까지만 들어있고 고1 과정은 구멍이 많아 다시 해야하는 완전...
-
알맹이콘
-
제 재수삼수 최대의 적은 휴대폰이었음
-
잠이 안오뇨 1
인생 망햇뇨
-
기숙학원 사정상 못 가게 됬는데 혼자 어떻게 공부해야 할까요? (걍 과외 구해서...
-
제발. . . 지금 다니는 학교 뜨고 싶어요 ㅠㅠㅠㅠㅠ
-
집에서 독서실 다니면서 독재했는데 6월인가 7월쯤부터 풀어져서 새벽에 유튜브로 예능...
-
안녕하세요 예비고3 07입니다 원래 계획대로라면 2-2학기 내신때 다니던 학원에서...
-
했을 때 환산점수가 진학사랑 너무 차이가 나는데 대학교 그걸 믿어야 하는건가요?...
-
이젠 미적 80이 2일지도?가 되면 어떡하노 ㅆㅂ
-
사람으로 돌아갈 시간이다
-
주말에 좀 쉬어야지
-
그러기에는 늦었나.. ....?
-
ㅇㅈ 10
-
푸흡 전 내일을 위해 자겠습뇨 푸히히
-
그냥 사람들이랑 부대끼는게 재밌어서 하는거임 근데 오늘은 좀 재밌게 즐기긴 한듯...
-
정의는 언제나 승리하니깐 어쩔 수 없나
-
잡 2
니다. 오늘은 내일을 위해 일찍 잠
-
아니 ㅅㅂ
-
암튼 개꿀
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..