[유대종T] 11번 이의 제기에 대한 교육청의 답변입니다.
게시글 주소: https://iu.orbi.kr/0008155313
■ 질의 내용
3월 13일 실시한 학평 시험 11번 문제에 논리적 결함이 있어 다음과 같은 사유로 복수 정답을 요구합니다.
11.<보기>의 (가)~(다)에 들어갈 내용으로 적절한 것은? [3점]
| < 보 기 > |
| |||||||||||
|
| ||||||||||||
| 선생님:지난 시간에 배운 음운의 변동에 대해 잘 기억하는지 질문 하나 하겠습니다. ‘낫다’와 ‘낳다’가 활용될 때 공통적으로 일어나는 음운 변동은 무엇일까요? 학 생:둘 다 음운의 (가) 현상이 일어납니다. 선생님:맞아요. 그래서 사람들이 가끔 혼동해서 틀리곤 하지요. (가) 현상이 일어나는 용언들 가운데 불규칙 활용을 하는 것은 모두 음운 변동이 표기에 반영되는 반면, 규칙 활용을 하는 것은 표기에 반영되기도 하고 반영되지 않기도 합니다. ‘낫다’와 ‘낳다’는 다음 중 어떤 유형에 해당할까요?
학 생:‘낫다’는 (나) , ‘낳다’는 (다) 에 해당됩니다. |
| |||||||||||
|
(가) (나) (다)
① 축약 Ⓐ Ⓒ
② 탈락 Ⓑ Ⓐ
③ 탈락 Ⓒ Ⓑ
④ 교체 Ⓑ Ⓒ
⑤ 교체 Ⓒ Ⓑ
(가)에 들어갈 수 있는 것은 탈락 형상뿐만 아니라 교체 현상도 가능합니다. ‘낳는’과 ‘낫는’ 모두, [난는]으로 발음되기 때문입니다. (각종 교과서에서 동화는 교체의 범주로 인정하고 있습니다.)
해당 지문에서, ‘선생님’의 질문은 “‘낫다’와 ‘낳다’는 어떤 유형에 해당할까요?”라는 것이므로, ‘낫다’와 ‘낳다’는 (가) 교체 현상이 일어나는 용언들에 해당할 수 있습니다. 그 중 불규칙 활용을 하는 ‘나아’, ‘나으니’ 등은 모두 음운 변동이 표기에 반영되는 반면, 규칙 활용을 하는 ‘낳아, 낳으니’는 표기에 반영되기도 하고 반영되지 않기도 합니다. 즉, (가)에 교체를 넣어도 전혀 논리적인 결함이 없어지므로 3번을 답으로 인정하지 않는다면 중대한 결함이 발생하는 것입니다.
고로 이 문제의 문제점은, 첫째, < (가) 현상이 일어나는 용언들>의 범주가 기본형을 포함한 용언들일 수 있다는 점, 둘째, <모두 음운 변동이 표기에 반영되는>이라는 언급에서 어떠한 ‘음운 변동’인지 적시하지 않았기 때문에 (가) 현상과 관련된 음운변동인지 아닌지 적확하게 판명하기 어렵다는 점입니다.
따라서 원래의 답인 3번과 5번을 복수 정답 처리해야 합니다.
■ 출제팀 답변
11번은 용언의 활용 과정에서 일어나는 음운 변동과 표기와의 관계를 묻는 문항입니다. <보기>의 흐름에 따라 우선 ‘낫다’와 ‘낳다’가 활용될 때 공통적으로 일어나는 음운 변동을 확인토록 하고 있는데, 이는 질의에서 말씀하신 것과 같이 “교체”와 “탈락”의 두 가지가 모두 해당됩니다. 따라서 (가)에는 ‘교체’와 ‘탈락’ 둘 중 어느 것이나 들어갈 수 있습니다.
그런데 활용 과정에서 ‘교체 현상’, 즉 비음화나 경음화 등이 일어나는 용언들의 경우에는 해당 단어가 규칙활용을 하느냐 불규칙 활용을 하느냐에 관계 없이 교체 현상이 표기에 반영되지 않는다는 점에서, 음운 변동과 표기의 반영 여부를 관련지어 묻는 것 자체가 무의미하며, 결과적으로 (가)를 ‘교체’로 보게 되면 정답이 존재하지 않습니다.
이는 문항의 설계 의도가 애초부터 ‘교체 현상’이 아니라 ‘탈락 현상’과 ‘표기’와의 관계를 탐색토록 하는 데 있는 것과 무관치 않습니다.
-> 저도 그 정도는아는데, 왜 이렇게 내셨는지...ㅠㅠ
‘교체’와 달리 ‘탈락 현상’의 경우에는, <보기>에 제시된 ‘낫다’(ㅅ탈락)와 ‘낳다’(ㅎ탈락)뿐 아니라 ‘울다’와 같은 ‘ㄹ탈락’, ‘쓰다’와 같은 ‘ㅡ탈락’, ‘푸다’와 같은 ‘ㅜ탈락’ 등 탈락 현상 전반에 걸쳐 불규칙 활용은 탈락 현상이 표기에 반영되는 반면, 규칙 활용은 탈락 현상이 표기에 반영되기도 하고 반영되지 않기도 합니다. 이 문항에서 주어진 ‘낫다’와 ‘낳다’를 두고 탈락 현상이 표기에 반영되는지 여부를 판단하면 정답은 ③이 됩니다.
읽기에 따라서는 <보기>의 두 번째 선생님 진술이, ‘공통적으로 일어나는 음운 변동’과 ‘표기에의 반영 여부’를 분리하여 판단하도록 한 것처럼 읽힐 수도 있어 질의에서 지적하신 것처럼 정답을 확정하는 데 어려움을 겪을 수도 있겠습니다. 그러나 <보기> 전체의 흐름을 고려할 때 두 가지(음운변동과 표기)를 분리하여 생각할 수 없고, <보기>에서 말하는 음운 변동을 ‘탈락 현상’으로 이해할 경우 정답이 ③이 되는 것이 타당하다고 판단됩니다.
-> 그럼 A현상과 관련된 음운 변동이라고 했어야죠. 에효..
앞으로 좀 더 치밀하고 신중하게 문항을 구성할 수 있도록 노력하겠습니다.
감사합니다.
-> 치밀성이 떨어진 것은 인정하셨네요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
돌겠네 4주차인데 한 번도 안 함 나머지 애들은 혼내니까 하던데 얘는 답이 없네 하
-
문과 3수 7
3수해도 취업할 수 있나요? 로스쿨 전문직 안 원하고 방송계 언론계 광고계 엔터업계...
-
사실 저예요ㅜㅜ 읔읔 아침 먹고 올걸
-
생윤 사문입니다
-
모든수는 자연수로부터 시작되고 자연수는 1로부터 시작됨 따라서 제1원인을 대입할...
-
어찌보면 이렇게 수준높은 교수님의 강의를 집에서 다리 벅벅 긁으면서 볼수있는것도...
-
정품 >> 제본유빈 >>>>> 태블릿유빈 순으로 공부가 잘 되더라 뭔가 공부 밀도가 달라짐
-
대전가서 좀 쉴 예정 ㅎㅎㅎ
-
과탐이랑 수학 실모 풀고 싶은데 아직은 아닌가,,,
-
수능공부팁 0
강의너무많이듣지마셈
-
윈터스쿨의 첫주 1
윈터스쿨에서의 첫주 끝 확실히 뒤로 갈수록 힘들어요..
-
얜 걍 아이디도 까야겠다 본인 6/9 수학 단단한 1등급 수능수학 시발 마킹이슈로...
-
답지가 없지 않겠지 갑자기 불안하네
-
얼버기 0
-
나중에 붙어도 '성대' 가버리는 수가 있다 인과계는 올해 입결상승이일어났다구 ㅎㅎ
-
건국대 기술경영vs동국대 정보통신공학 머가 더 좋죠
-
재수 질문 0
2024 수능을 봤고 1년 대학을 다니다가 2월 입대해서 군수를 할려고하는데 수학...
-
고간발기 0
고려대 간호학과 발표기원
-
올해는 메가패스 안사려는데 뭐 안되면 어쩔 수 없지만 궁금해서요..
-
힘세고강한아침 0
-
작수 풀어봤을때 언매 확통 정법 사문 33223 나왔습니다 국어-민철게이...
-
뭐가 높으려나
-
지금 의대들어가는 애들은 고점에 교대간 애들이랑 비슷함 4
앞으로 의대들어올 애들에게 미리 애도를 표한다
-
이미 의료시스템이 무너지긴 했어도 의료인 수급도 끊기면 여기저기 곡소리 나는데가...
-
흔한일임뇨??
-
크으 역시 변호사 센세
-
기차지나간당 10
부지런행
-
꾸중글 2
꾸중들었어
-
현재 고3 국어과외 주1회 다니는중입니다 주 1회 숙제가 자이스토리 2회분량...
-
둘다 안정 1 띄우긴해야함
-
지금나온 0
수학 중4~어4 n제 뭐뭐있나요
-
수국김 다듣고 바로 일클 들어가는것보다 반응스위치온 듣고 들어가는게 낫나요?
-
가장 작은 양수 1
1/inf = x = 가장 작은 양수 가장작은 양수를 2로 나눠도 가장작은 양수가...
-
심지어 지금 배터리도 22프로
-
얼버기 8
나도 내가 왜 지금 일어났는지 모르겠음
-
퇴근하고시퍼 2
1시간 반 뒤면 간다
-
수능 이후로 국어 푼 적이 없는데, 고대에서 자교 로스쿨 가려면 지금 집리트 몇점...
-
야식으로 라면 먹어야지 18
조식인가
-
슬슬 자볼까 4
난 준비됏음
-
얼버기 4
사실다시잘거임 바이바이
-
뭔 일상이 재미도 없고 잠도 안와서 질문함 일단 운동, 다이어트, 피부관리,...
-
아오 졸려.............
-
방금 전에 생각하고 있던 걸 갑자기 까먹어서 다시 기억을 되돌리느라 한참 소비하고...
-
졸린데 눈이 너무 아파 10
으아아악
-
문돌이라 더 걱정이 아른아른 그래도 난 우직하게 국정원 7급공채 밀고 나간다...
-
얼버기 4
-
안자는 여자 0
안자는 여자 디엠ㄱ
아니 ㅋㅋㅋ 치밀하지 못했다고만 하면 뭐 어쩌라고 ㅋㅋㅋ 복수정답이라도 해줘야지요!!!
교육청 : 아몰랑 내가 짱이양
역시 서울대/교원대 나왔다며 엘리트라 자부하면서 교육청에서 세금타먹는 분들이네요.
여러모로 .. 참신함(?)과 트렌디함(?)을 보여주려는 시도는 좋았으나.. 오류가 많아서 아쉬웠던 시험이라고 생각해요. 그나저나 11번을 이렇게 넘어가버리네요.
트렌디함과 참신함의 전제는 엄밀성인데 그 부분이 넘나 아쉬운..
ㅋㅋㅋ
넘나 아쉽다 못해 오류 속출ㅋㅋㅋ