[박수칠] 미분계수와 함수 극한의 관계에 대하여
게시글 주소: https://iu.orbi.kr/0007810298
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아메추 0
뭐먹뇨
-
틀려서 78인데 2뜨라고 시발연아
-
그때 아기고딩시절이라 집모했었는데 비문학이 개인적으로 되게 쉽게 느껴져서 22급은...
-
마음의 준비를 해야겠군
-
다 맞아라 ㅠ?
-
정답률이 30%네 확통 선택자 중 하위 70%는 사실상 공부 포기했다는거 아닌가...
-
파란문법 삽니다 0
많이 더러워도 괜찮아요 가격 선제시해 주세요
-
서성한-연고대 라인이신 분들 투표해주세요
-
그냥 혼자서 적당히 진학사 보고 하는 거랑 차이 크나
-
평균이 미쳐날뛴다던데
-
오늘까지던데 낼부턴 가격 오를라나요..?
-
1밖에 공부안해봐서 ㅠㅠ
-
55강인데 끌리네요
-
안 돼
-
되야만해
-
이더리움 풀매수하셈 돈이 적다면 미국주식에서 ethu 풀매수 ㄱ 진짜임
-
숨쉬기도귀찮다 2
-
과외 하고싶다 0
6평 국어 4에서 수능 1까지 올렸는데…
-
궁금.
-
오르비 뱃지 1
작년부터 합격증명서로 한 5번 인증했는데 안되서 재학증명서로 다시 인증했는디 또...
-
ㅅㅂ ㅈ댓네
-
언제까지 인강만 들을 수도없고 계획도 유동적으로 바뀔 수 있는데 일단 할 교재만 사는게 낫겠죠?
-
커리 평 0
문학 : 강기분 독서 : 브크 수학 : 뉴런 영어 : 키스 로직
-
자기 패드로 자기 공부한 거 보여주다가 여장 사진 쫘르륵 나와버린 거임
-
건동홍 가능한가요? 상향은 최대 어디까지 지를수 있을지도 궁금하네요 ㅠ
-
어휴
-
후한 거라고요? 진짜로?
-
후한거임 짠거임?
-
미적 0
공통3틀 미적 2틀 80점이 좋은 거임 공통2틀 미적 3틀 80점이 좋은 거임??
-
크롭티나 메이드복 입어줬으면 좋겠다
-
부모님 반응이 영 시원찮음 난 경외시 문과계열보다 그냥 동홍 자전으로 넣고...
-
어떡하지
-
1도 안 꿀리네 ㄷㄷ
-
노운현 2
무지잘한다
-
걍 옆자리 앉고 마스터휘장 소리 날려주면 옆에서 유미하던 여자가 오빠...
-
슬슬 음주욕망 몰려옴 14
하... 참자
-
19패스 마이맥은 대성 마이맥
-
내가 과거에 살고있었어
-
잠이 진짜 개많아서 주말 맨날 날리고 요즘 학교끝나고 낮잠도 자고 사실 중간 끝나고...
-
스윗중남 만날까 5
하
-
아 씻기 귀찮다 7
나가기싫은것ㅇ
-
노래방 도착 2
-
연애하는거 너무 힘듬뇨 18
교수님하고 연애하면 과제 좀 덜내주실줄 알았는데 오히려 추가자료까지 주심뇨...
-
선넘질받 4
심심해여
-
계속 자고싶은데 잠이 이제 안와
-
올해도 ㄱㄴ?
-
과 상관없습니당
-
교육과정 개정 이전 안넘어가는게 멍청한 마지막 이벤트임?
-
한국의 가장 큰 단점 14
동성결혼안됨
-
지구 42 0
제발 1 주세요... ㅠㅠ 맨날 쓰는 글이 지구 내용인 듯...
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^