어피니티 [1339220] · MS 2024 · 쪽지

2025-01-30 02:49:57
조회수 350

심심한 기출분석 (230922)

게시글 주소: https://iu.orbi.kr/00071661968

1. 극단적인 경우 생각해보기

문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.


2. 불변량

시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.

3. 문제풀이

f와 g 관찰) 주어진 함수를 해석해보면

f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.


이정도 해석은 바로 할 수 잇어야 될거 같습니다.


즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠

 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)


h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.

f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)



h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.


t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다. 

여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.

이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.


불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.


이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.


이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.

즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.

I) 안 닿는 경우

즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.

II) 닿는 경우

닿는 경우는 2가지로 나눌 수 잇을겁니다.

i) t가 f의 극소지점까지 이동하고나서야 닿는다.

ii) t가 그 이전일 때 닿는다.


둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.

1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.

2) 극단적인 경우.

h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.


그러면 h의 값은 0이 됨을 알 수 있습니다.

만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
 (근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)

그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)


즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.

또한, h의 값은 이산적으로 변할 수밖에 없습니다.

따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)

이는 문제를 만족하지 않음을 알 수 있습니다.

마무리)


(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.

rare-속초 바다 rare-FC 서울 rare-한양대 약대 로고 rare-CRUX rare-탈출 rare-팔라우 바다 rare-최애의아이 아카네짱 rare-맛있는 청포도 rare-주다사 rare-제리인사짤 rare-핵물리학자 rare-파마늘 rare-데스노트 rare-진격의 거인 리바이 rare-월레스와 그로밋 rare-명일방주 스나이퍼 rare-명일방주 캐스터 rare-명일방주 서포터 rare-명일방주 뱅가드 rare-명일방주 가드 rare-명일방주 디펜더 rare-명일방주스페셜리스트 rare-명일방주 메딕 rare-エメ의 싱글앨범

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.