심심한 기출분석 (230922)
게시글 주소: https://orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
신택스랑 파데중 고민중이에요. 제발 알려주세요 선생님들
-
이거 어카냐
-
지금 장재원 공통 미적 듣고았고 강기원 미적 대기 스2쯤 풀려서 어떻게 할까...
-
판단부탁 2
디엠 분석가 구함 소개팅할사람한테 중매인이 내사진 보냈는데 반응 분석좀
-
성관계하다가 여자인줄 알았는데 보추여서 ㅈㄴ싸우다가 깨버렸는데 이거 좋은꿈이야
-
현역은 깡이 있어야지 자신있게 가자
-
개쩌는 공부계획 1
a4로 나만의 수학교재를 만들기 아 잇올에서 스테이플러 하루종일 찍어댈거임
-
고3 수학 노베 5
다시 고1 수학부터 하는데 열심히 하면 노베 극복할 수 있겠죠? 하루에 5~6시간 합니다
-
수학 못해서 못 알려주겠다
-
잘때마저도 좆같게
-
소신발언 2
경제 경영이 문과에서 제일 높은데 상경이라 해야되는거아님??
-
반수 상담 1
현역 수능 언미물지 97 87 2 68 96 아주대 수시 교과 붙어서 옴 반수해서...
-
난 스티카라고 발음함
-
며칠 전까진 텐타시온 노래에 꽂혀서 주머니에 총 넣고 다녔는데 야구 시즌 다가오니까...
-
국민대 정시 추가합격생인데 기숙사 들어가기 많이 힘든가요??
-
9모 다시보는줄 알았음
-
근데 작수는 약간 20 21 은 기출에서 못보던 소재인것같음
-
진짜 궁금 만약 저 둘 다 되는 성적이라면?
-
기가 쭉쭉 빨리네..
-
2등급정도되면 n제 ㅈㄴ푸는게 맞지않나?
-
레알피곤... 5
번역일은 거의 없었는데 행정일이 또 많아져서 바빴다는... 눈 감으면 바로 잘거 같다...
-
남들이 고민하는 시간에 이분이 둘다 가져가시고 정치까지 하심 ㅇㅇ
-
주식을 추천해주고 죽이고 싶은 사람에겐 선물을 추천해주고 사랑하는 사람에겐 N수를 추천해줘라
-
근데 이미 사서 풀고있긴함
-
나만 에피없어 18
사실 대학도 못갔어
-
개념할때 좋은것 0
생각의질서
-
인생 ㅈ같네 4
ㅗㅗㅗㅗㅗㅗ 다 똑같이 등록금내면서 왜 원하는 수업은 못듣는거임?ㅋㅋㅋ
-
생윤 기출? 0
현재 림잇만 듣고 있고, 필기 복습과 교재 내 문제만 풀고있습니다 풀커리를 탈...
-
이런건좀 없애라
-
걍 수특 수완 푸는게 낫지 않냐
-
특정 단어만 보고 불나방처럼 꽂히는 거 고쳤더니만 이젠 무의식 영역에서 고쳐야...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
52344->31232
-
연고서성한은 좀 떨어진거 같다고 하는데 경희도 떨어졌나요? 건동홍은 오히려 추합이...
-
점심 ㅇㅈ 스윽 13
-
무기력하다...
-
국민대 합격생을 위한 노크선배 꿀팁 [국민대25][성적/재수강/출석] 0
대학커뮤니티 노크에서 선발한 국민대 선배가 오르비에 있는 예비 국민대학생, 국민대...
-
다들 기대해라
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
센츄 언제나오지 6
지난달처럼 22일인가
-
난 쉽던데 아직까진
-
미적과탐에서 미적사탐으로 간다면
-
그게나야... 이번주 왜이렇게 추워졌냐?? 그래도 다음주에는 날씨 풀린다니까 ..
-
아 근데 남자임
-
이때까지 컵에서도 팬들끼리 실험픽실험픽 했던게 진심픽으로 드러나는 순간이었다
-
분위기 매우 굿굿 물론 미적 기하 둘 다 했으니까 가능한 선택이긴 했어요
-
ㅈㄱㄴ
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼
아사람 왜 닉언하나요