[자작문제 해설] 수1 삼각함수 문항
게시글 주소: https://iu.orbi.kr/00071486499
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예비고3인데 생짜로 기출 풀다보니 아니다 싶어서 실전개념 강의를 들어보려고...
-
중학교 ㅁㅌㅊ 2
외고 겁나 안 가네
-
동생 말 드럽게안듣네 14
동생 남자 예비고3인데 키가 166?그정도밖에안돼서 키 클려면 일찍 좀자라했더니...
-
글을 삭제하고 말거에요
-
연금 / 민주주의 / 관세 6 9 수능 중에 한 번쯤은 낸다
-
다들 재수하러 간 건데.. 너무하네
-
남자면 남들 다 군대가있는시간에 여자면 남들 거의 졸업가까워질시간에 수능공부하는건데...
-
가는거 어떰? 계량경제학쪽으로 파서
-
우리학교 개조조조조조조조조좆반곤데
-
무리였다.. 중도포기
-
네가 왜 거기서 나와 ㅋㅋ
-
내년에 정원문제나 뭔가 좀 불안할거같은데.. 정원 확정은 언제나는거죠..?
-
오... 5
생각보다 높네
-
루시안-가우딘 1
빨강빨강(보는거처럼 달지 않음)
-
오...
-
역시 4년제 고등학교
-
각이냐
-
국물라면 미치겟다
-
진짜… 말도 안된다
-
사실 그정도 하면 질림
-
올라가려나 이거
-
중복 내용이 보인다 ㅋㅋㅋ 한 3년마다 재탕하나
-
자야겟다
-
오늘의 점심으로 오징어짬뽕컵라면 vs 열라면봉지라면
-
작년서울대영명
-
캬
-
에혀…
-
3개푸럿는데 10
걍 올릴까 잘까 이제..
-
원하는책 일본어판 구해다주면 ㄹㅇ 사랑스러울듯
-
궁금
-
15,22,28,30 남았을때 뭐부터 풀어 근데 22번은 수열문제임
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ
"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!
좋은 문제 공유해주셔서 감사합니다 :)