컴공 일기266
게시글 주소: https://iu.orbi.kr/00071460551
n이 충분히 크고 적당한 λ가 존재해서 np = λ 라면, 이항분포 B(n,p)를 포아송 분포 POI(λ)로 근사시킬 수 있습니다.
사실 이항분포는 개별 시행마다 성공 확률과 실패 확률을 세세하게 따지기 때문에, 확률을 계산함에 있어서 복잡합니다.
특히 n값이 커지면 커질수록 그렇지요.
포아송 분포의 장점은, 이항분포처럼 개별 시행마다의 확률을 따지지 않고, 단위시간 / 구간 당 평균적으로 몇 번을 성공했는지만 따져도 적확한 확률을 구할 수 있다는 것에 있습니다. 또한, 이항 분포는 시행횟수 n과 확률 p를 매번 조정하면서 확률을 계산해야 하지만, 포아송 분포의 경우는 모수(λ)를 적절하게만 변환시켜 주어도 단번에 값을 구할 수 있죠.
예를 들어, 어떤 일을 독립시행한 횟수가 100번이고 어떤 일이 일어날 확률 P = 0.01이라고 가정합시다.
또 그 일이 2번 성공할 확률을 구한다고 가정해보죠.
그러면 X~B(100, 0.01)이고 시행은 독립적이므로 100C2 * (0.01)^2 * (0.99)^98
이 됩니다. 확률을 구하기는 했지만, 이 값이 대략적으로 얼마 즈음인지 단번에 파악하기가 쉽지 않죠.
하지만 시행횟수가 충분히 크므로 포아송 분포를 적용할 수 있는데, 이런 경우 조금 더 쉽게 구할 수 있습니다.
POI(λ) = x! / e^-λ * (λ)^x (x : 성공한 횟수, λ : 모수)
여기서 λ = np = 100 * 0.01 = 1
POI(1) = 2! / e^-1
e^-1 ~= 0.3679 정도 되므로 확률이 대략 0.1839 정도라는 사실을 알 수 있습니다.
포아송 분포의 확률질량함수식이 비교적 이항분포 확률질량함수식보다 계산하기 용이하다는 장점도 있지만,
이 분포의 가장 큰 강점은 유연성에 있습니다. λ를 자유롭게 잡을 수 있거든요. 하루 평균, 일주일 평균,
1년 평균… 원하는 값을 조정해 줄 수 있기 때문에 개별 시행에 집착하는 이항 분포보다는 조금 더 현실적인
분포라고도 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어제 죽을뻔한 썰 푼다 11
여친이랑 대화하다가 크롭톱 이야기 나와서 근데 크롭톱 후드 입을때 안에 면티를 한벌...
-
재종드가기전에 할것도없는데 고1수학이랑 중등기하 다 까먹은거 복구좀쳐보게 굳이인가
-
예비 100번대는 어떻게 될 것 같나요...?
-
어차피 의평원 탈락각이다 건글은 충주 5년이고 (본3까지) 늘어난 인원 실습이...
-
프사바꿈뇨 5
-
잇올에서 공부하는데 몸에서 갑자기 열나고 가만히를 못있겠네 아 공부해야되는데 미치겠네
-
외대언제나오냐거 2
기다리기지쳐
-
꾸중글 6
꾸중 들을래
-
오르비 보면서 든 생각 10
잘난 척이든 실제로 잘 났든 그걸 자기 입으로 나 잘났다고 떠들고 다니는 것에서...
-
머리를 감는데 머리띠를 하고 머리 감음 개빡쳐서 말리는데 머리가 안마름 모르겠다...
-
얼버기 17
-
기본으로 나오는 커버색을 커버로 설정하면 됨
-
연뱃이 생겼지만 4
닉값을 위해 성뱃 달고 있어야지
-
이거 히또다 히또, 예티까진는재밌게 가능한 듯
-
순천의 추합 얼마나 돌까요?
-
닉변 16
짠
-
이제 곧 독서, 문학 강기본 끝나는데 이대로 인강민철이랑 강기본 사서 쭉 따라가먼 되겠죠??
-
고등학교 가는 기준 21
집 가깝고 학습분위기 좋고 급식 맛있는게 Best VS 내신따기 쉬움
-
얼버기 19
졸려
-
ㅇㅇ
-
졸업식 다녀옴 4
-
작수 3이고 배움이 짧아서 그런진 모르겠는데 개인적으로는 13~15 라인이랑...
-
얼버기 3
-
여캐일러 투척 6
화2 정복 9일차
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
전과목을 애매하게 올리려하지 말고 한과목의 한 단원을 마스터하고 다른과목의...
-
탈릅한 모 오르비언이 플어보라고 던졌는데 제가 "내가 어케 아닝!!" 라고 했더니...
-
물론 현실적인 얘기 정치 얘기로 가면 좀 쉽지 않아지는데 책도 많이 읽으시고 진짜...
-
ㅈ같은 연대... 결국 나도 다시 사연 많은 중대 경영이 되는건가
-
[슝좍] 무빙맨 1
-
뱃지신청할때 2
어디까지 가려도 됨뇨? 이름 생년월일 이런거 가려도 되나..
-
기차지나간당 8
부지런행
-
잇올도착 3
투데이스타트
-
씨발 ㅋㅋㅋㅋㅋ 치킨양 이게 맞나
-
현재의 앞은?
-
에필로그 대용으로 국정원 쓸거면 생글-국정원 독서 이렇게 봐도됨? 0
범작가가 심찬우 채널 와서 한 설명으로는 생글하고 국일만 문학하고 같이봐랬는데...
-
너무 좋아 0
-
탱 비에고 하지마라 17
하지말라면 하지마라..
-
거리는 둘다 편도 2시간 이상 걸리니까 상관x 문과는 학벌;; 과도 상관없이...
-
대체조제 가능하게 하려는 것 같은데, 약대 입결 떡상 가나요?
-
트황상의 은혜로 2
모든 주식이 올랐네 저는 정규장 안 보고 죄다 예약으로만 거래해서 일어나서 알았음
-
1등으로 도착 ㅎㅎ
-
미리보기 방지
-
88인데 구문강의 높2-1인사람한테 좋나요? 살면서 들어본적ㅇ 없어서 후기좀여
-
기상완료.. 0
독서실 가자.. 가자마자 시발점 통통이부터
-
하루에 할껄 세우면 플레너에 있는 순서대로하나요? 아님 플레너 쓰고 그중에서 하고싶은거 먼저하나요?
첫번째 댓글의 주인공이 되어보세요.