생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
게시글 주소: https://iu.orbi.kr/00071448904
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1일1퍼리 1일차 11
꾸준글
-
나도한다 만덕 19
정확히 10분뒤 마지막댓글에 만덕 2시 43분 ㅇㅇ
-
.
-
나랑사귈사람 9
덩치좋은남성우대
-
오랜만이네요 1
일본 소도시에서 온천여행으로 일주일 정도 쉬다왓음 벌써 다시가고싶네 나중에 사진도올릴게요
-
그렇게 설벳달고 꺼드럭거리고 말았단 얘기입니까?
-
50번째 댓글 만덕줌 75
ㅇ
-
선착순 5명 이미지 31
-
ㅅㅂ어제 26만이었는데 뭐야 ㅜㅜㅜ 댓글그만쓰고더녀여갯다
-
새르비 글쓰려고 10일기다렷는데
-
공익 복무 할 거 같은데..금융권 진출이나 법조계로 나아가는 데에 걸림돌 있나요?
-
화1꿀과목인뎅 4
ㅇ 에휴..
-
엔딩곡도 들어야하는데
-
에쎄 슈팅레드 0
이거 요물이네 ㅋㅋㅋㅋㅋ 계속 슈레필듯
-
자괴감오짐
-
자기전까지이미지적어드림 23
ㄱㄱ
-
오르비뉴비인데 4
여기분들 좀 음?침한거 같아요 푸ㅠㅠㅠ
-
개강 언제쯤 하나요
-
잘탄다 ㅋㅋ
-
저는사실 이수린입니다
-
걔 좀 호감이었는데
-
안그래도 비행기 탈 때 조금 무서웠는데 최근 항공사고 보고 더 심해짐 담주에...
-
ㅈ냥이 따라할 거임 11
나한테 프사 떠넘긴 놈 ㅗㅗ
-
혼자있고 싶어서라면 언제까지 기다릴 수 있을거야
-
너무정신없었음 ㄹㅇ
-
이세상어디가숲인지 15
어디가늪인지 그누구도말을 않네 나원래진짜눈물없는사람인데 작년에한번 아침에 밥먹으면서...
-
로맨스 ㄹㅇ 1도 없더라..
-
새벽 노추 0
-
나는 내가 5
빛나는 별인 줄 알았어요
-
프사 떠넘기고 자러 갔네
-
뭐가더어려움 난 후자가 더어려웠던거같음 시간관리도 안되고
-
저의 지역에서는 대부분이 대구로 대학을 갑니다 근데 저는 서울로 가게되었습니다....
-
아뻘글안써야겠다 1
ㄹㅇ이
-
맞팔구 2
-
크크크크
-
롤하러갈게 베베 3
ㅂㅂ
-
가끔 개미털기 시전
-
쌍사어디감? 2
뻘글장인 1티어
-
어떰
-
난도순위가 어케됨? 그리고 복추는 어떤느낌임? 월욜부터 복추 들어갈것 같은데 궁금하네
-
N티켓부터 다시 푸러야지…
-
이런 빠글빠글한거 넘 이쁘다❤️❤️❤️
-
ㅇㅈ 5
아! 이데올로기!
-
뻘글 잘싸 베베
-
오케이계획대로되고있어 14
으하하하하
-
김용현 측, 문형배·정청래 등 고발…"수사기록 누설" 1
김용현 전 국방부 장관 변호인단이 문형배 헌법재판소장 권한대행과 정청래 국회...
투과목 칼럼은 개추