[칼럼] 이 문제 눈풀 가능?
게시글 주소: https://iu.orbi.kr/00071292415
안녕하세요
오르비by매시브 수학강사 이대은입니다.
벌써 2025년이 되고
이주일이나 흘러서
수업하는 모든 반이 개강했네요!
개강주도 끝났고
시간도 여유가 있어서
칼럼을 들고왔습니다.
주제는
과연 나는 생각을 하며 문제를 푸는가
입니다.
그리고 생각을 한다면
아래에 있는 문제 정도는 바로 눈풀이 가능할 거예요.
이 내용을 바탕으로 문제를 통해 예를 보여드립니다.
문제는 늘 그랬지만
칼럼의 이해를 위하여
충분히 풀 수 있는 쉬운 문제로 준비했으니
꼭 읽어보세요.
실제로 준킬러 이상의 고난도 문항들은
생각을 하지 않으면 절대 풀리지 않는 경우가 많으니
이 문제가 쉬운 문제라고
주제를 간과하시면 절대 안 됩니다!
먼저 좋아요, 팔로우를 해주시면 매우 미리 감사드려요 :D
* 이 글은 이미 상위권인 학생에겐 당연할 수 있음을 미리 알려드립니다.
1. 문제를 풀 떄 생각한다는 것이 무엇인가
절대적인 기준이 될 수는 없겠지만
간단하게 나눠드리면
본인이 문제를 읽고 손이 먼저 반응하여
이것저것 시도하다 답을 낸다면 생각을 하지 않는 경우가 됩니다.
물론 여기서 예외는 있습니다.
수학에 감각이 탁월하여
본인은 손부터 나간다고 생각하지만
대부분 한 번에 답이 나오는 경우입니다.
하지만 이런 경우는 극소수기에
제외하고 글을 적어보겠습니다.
보통의 경우에서 생각을 하며 푼다는 건
조건들의 의미를 파악하고, 어떤 유형인지 파악하여
해당 유형에서 이어지는 풀이를 적용시키려고 합니다.
이런 판단을 하는 게 생각하는 풀이입니다.
생각하며 푸는 건 매우 중요한데
이와 관련하여 아래에서 다뤄보겠습니다.
2. 생각을 하며 푸는 게 중요한 이유
수학을 잘하는 학생들
즉
논리적으로 풀이를 이어나갈 수 있는 학생들은
본인이 사용하는 수학적 도구가 충분히 당위성이 있다는 것을 알기에
본인의 풀이에서 무조건 답이 나온다는 것을 압니다.
그런 학생들은
낭비하는 시간도 적어지고
만약 본인의 답이 선지에 없어도
논리가 정확하다는 것을 알기에 계산실수만 찾으면 답이 나오게 됩니다.
그런데 만약 생각을 하지 않고 수학문제를 접근하는 경우
같은 문제를 시간을 두고 푸는 경우 또다시 못 풀 거나
본인 풀이에 확신이 없어서 답이 안 나오면 새로운 풀이를 떠올리려 합니다.
하지만 새로운 풀이를 떠올리는 것도
어떤 논리적 사고에 의해 떠올리는 것이 아니라
그냥 또다시 이것저것 시도하게 됩니다.
게다가
이런 학생들이 주로
최단경로의 풀이를 들으면 이해는 쉽게 하지만
스스로 문제를 풀 때는 이런 생각을 못하는 경우가 정말 많습니다.
대표적인 이유로는
공부를 그래도 꽤 해서 풀이를 들으면 이해가 바로 되더라도
해당 풀이를 왜 쓰는지 모르기에
변형문항이나 유사문항을 만나면 또다시 풀이가 떠오르지 않는 것입니다.
모든 풀이에는 근거가 있습니다.
그런 근거들을 토대로 기출문제들을 살펴보면
같은 수학적 도구를 사용하는 문제들은
무조건 같은 근거들을 갖고 있기에
그 어떤 풀이도 결과론적이지 않고 충분히 당위성이 있다는 것을
알게 됩니다.
그리고
가끔 어떤 풀이는 생각도 못했지만
막상 풀이를 들어보면 훨씬 빠르게 풀리는 풀이가 있지만
혼자 풀 땐 의심조차 하지 못하는 경우가 있습니다.
아무리 화려해 보이는 풀이라도
해당 풀이를 사용하는 근거는 생각보다 단순하며
그 근거는 이미 우리가 알고 있는 내용일 가능성이 높습니다.
단지
조건을 보고 의심하고 집착하는 습관이 없어서
해당 풀이를 떠올리지 못할 가능성이 높습니다.
아래의 문제를 통해
제가 보여드릴 풀이가 본인이 스스로 떠올렸는지
한 번 이해해 보세요.
꼭 문제 먼저 읽고 풀이를 떠올린 다음
아래의 글을 읽어보세요!
1. 흔하디 흔한 학생이라면
삼차함수의 그래프를 가장 먼저 그릴 겁니다.
하지만
이 문제를 보고 그래프를 먼저 그리고 풀이를 시작했다면
조건에 대한 판단과 해석을 하지 않을 가능성이 높습니다.
조건이 어떤 유기적인 관계를 갖고,
해석했을 때 어떤 상황인지에 대한 판단없이
바로 그래프를 그린다면
절대 안 됩니다.
이 문제는 난이도가 낮아서 딱히 상관없어 보일 수도 있지만
실제 준킬러 이상의 문제들을 보면
조건의 해석을 하고 풀이를 시작하는 경우와
그냥 손이 가는 대로 풀이를 시작하는 경우는 많은 차이가 납니다.
2. 하지만 어떤 학생들은
모든 풀이에는 근거가 필요합니다.
우선 아래의 내용을 미리 알고 있어야 합니다.
이 내용을 알고 있다면
절댓값이 있는 삼차함수의 극댓값 후보는
삼차함수의 극댓값과 극솟값 뿐이고 서로 부호만 반대임을
알 수 있습니다.
그런데
삼차함수는 항상 변곡점에 대하여 대칭이므로
다음과 같은 상황을 만족시킨다.
*영상해설입니다.
쉬운 문제라 직접 손으로 풀어봤다면
아마 많은 분들이 답을 구했으리라 생각합니다.
변곡점을 이용한 풀이도 물론 쉽게 이해가 됐을 겁니다.
그런데
문제를 읽고 스스로 풀이를 떠올렸을 때
한 번에 떠오르지 않더라도
변곡점을 이용한 풀이를 떠올렸느냐
혹은
떠올렸을 때 당위성을 충분히 파악하며 찾아냈느냐
를 점검하셔야 합니다.
문제를 읽어나가는 태도도 습관입니다.
나는 괜찮겠지
나는 아니겠지
라는 생각으로 가볍게 여기지 마시고
수험생 초기에 올바른 방향으로 일년을 끌고 가시길 바랄게요!
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
오늘의 글은 여기까지입니다.
:D
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
또는
이대은T연구실 번호
01080719636 (선 문자 후 통화가능)
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크 (공통반/ 미적분반)
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
혼자 일본가는중 1
친구없는 아싸는 혼자 여행갑니다...
-
수능과외가 안되면 중학생이나 고1,2 라도
-
ㅎ
-
책 휘어있음 7
문제집 시킨거 방금 왔는데 물결모양으로 휘어있음. 이거 왜 그런거임???
-
모두 굿밤 6
내일 할.거 많은데 이거 실화냐~~
-
갱가서 도와줘도 리턴없고 개박는 애들이많아서 못해먹겠음 롤보단 메이플이 짱임
-
모평을봐도 231122 240628 241122 241128 같은 킬러없는거같음...
-
퐁 당 퐁 당 1
돌 을 던 지 자
-
수학이 왤케 어렵지
-
수험생 입장에서 직접 푼거라 어느정도 자기편향성이 작용하겠지만 개인적으론 적절한...
-
더블업해야지 0
낄낄
-
이강인 선발
-
중앙대 학벌 8
대기업 들어갈 때 마이너스 있는 학벌일까요?? 학점 괜찮다는 가정하에
-
자라. 4
넵
-
뭐요
-
너무 어렵잖아
-
탱제이스 너무 사기다 10
진짜 개사기같음
-
님들 수학 11
딴거보다 특히 어려운 분야 잇으신가요
-
4살때 나온 작품이..
-
은테 장점 0
옯창인 척 코스프레 가능함
-
광고내용이 너무 킹받음 지가 60키론데 너무 빠져서 병원까지갓다 그러니까 많이...
-
돌고래랑 고래 5
돌고래가 더 쎈거 아닌가요고래는 그냥 고랜데돌고래는 돌도 잇잖아요
-
댓글 달면 질문해드려요 49
-
아 원딜 1
아;
-
얼마나 커요
-
내용을 입력하세요.
-
하아..
-
더 모다겟는데..
-
26수능 27수능 응시할거면 군대 미루는 게 낫겠죠? 고민되네요 ㅜㅜ
-
멀티 장인 1
듀랭+오르비
-
나의 본처가 되도록
-
오르비 꿀팁 4
뭔가 재미난데 곧 지워질 글 같으면 댓글을 달고 진짜 지워졌을 때 사물함을 통해 들어가보세요
-
부탁드립니다 3
.
-
그래도 안지영이면 극복가능.
-
ㅂㅂ 4
내일은 동대가 했음 좋겠네요 이젠~그랫으면 좋겠네~
-
이런국가를왜좋아하는거지 가까이서보지않기에좋아하는건가
-
열반님 -> 다람쥐님 -> 나머지
-
근데 킬뎃만 보면 18
난 괜찮게 한 거 같아 역시 나야
-
근데 그래프가 편하긴한듯 그래프가 좀더 직관적임
-
수1수2도 있었네요 왜 이제 알았지
-
생각해보니까 0
할아버지랑 아버지 큰아버지 사촌형들 그리고 친형이랑 나는 같은 Y염색체를 가지고 있네 신기
-
예비 한바퀴 돌아도 추합안될 번호대지만 궁금해요 한교 한문 성대 성균
-
다 먼가 매칭이 되네 ㅋㅋ
-
님도 빨리 내 닉 알아내라.다람쥐님 닉 ㄹㅇ 그 다람쥐가 지엇을만한 닉이네
-
푸앙대 전과 0
문과에서 문과로 전과하려고 해도 전과하려는 과 전공기초 들어놔야 하나요?? 그리고...
와 진짜 변곡점 풀이 듣고 방금 머리가 띵 했네요...ㄷㄷ
아무 생각없이 x=2대입하고 구했는데...
솔직히 수학 엄청 자신 있고
잘한다고 생각했는데
이거 보면서 반성하게 되네요...
잘하는 분들은 정말 한계가 없는 것 같습니다..
재밌게 읽고 가요~!
저도 오르비에 수학관련하여 올리시는 글 보면 대단하다고 느껴지는 글이 자주 보입니다. ㅎㅎ
그래도 꽤 긴 글이라 귀찮으셨을 수 있는데 읽어주시고 좋게 반응해주셔서 감사드립니다. :D
서울대생이라니 멋지시네요!!
오히려 그래프가 사고를 막을 수 있다는 내용이 (저에게는)신선한 것 같네요!
앞으로도 좋은 글 많이 써주세요~
네네 저도 그래프를 많이 그리는 편입니다! 사실 자극적으로 적으려 본문을 저렇게 적은 거예요,, ㅎㅎ
좋게 읽어주셔서 감사헙니다. 다음에도 또 좋은 글로 찾아오겠습니다!