미적 이 정도면 난이도 어느정도임?
게시글 주소: https://iu.orbi.kr/00071234738
김기현 파데 미적 3주하고 킥오프로 복습하는데 개념할 때는 개쉬워서 별거 없는 줄 알았는데 유형서 오니까 대가리 깨질 거 같네 평소에 머리 나쁘다고 생각한 적은 없었는데..
사람들말로 이정도 책이면 기초라는데 이 문제가 노베 개넘으로 풀리는 문제냐? 한 70프로 접근하고 그 뒤에는 못 풀겠다 요즘들어 깨닫는다 빡대가리라는걸
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭘해야할까요... 기출을 그냥 쭉볼까요 아니면 다른 문제집같은게 있나요?
-
사실 약속은 잇는데 약속 시간은 없엇음 쨋든 늦음 먼저 보내고 ㅈㄴ 빠르게 따라붙을 예정
-
앱스토어에 마이맵<< 이거 있는지 확인 부탁드려도 되나요 이 앱 하나 때문에 아이패드 사려는 중
-
흠..
-
여사친도 보니까 서울대 소비자 이화약 대전한 붙고 이화약갔던디 인서울+약대 좋은듯…
-
네. 저요
-
내가 쓴 건 폭나고...
-
나도 슬슬 갈까 20
다들 건강히 지내라
-
선택의 순간 1
전 아직 우매한 20세임을 감안해 주십시오. 지금 드는 생각은 학사 취업이냐 대학원...
-
비슷한 난이도의 기출 있음?
-
일욜은 물리데이 아침부터 달려서 힘과 가속도 개념기출까지 다 끝내야징
-
뭐지다노 12
독서실에 키보드 놓고 다니는데 어떤 사람이 내 키보드를 쓰고 있음 뭐지다노????
-
수학 질문 0
이제 수분감 step2 시작했는데 이거 끝나고 한 2,3월까지 기출 한 번 더 하고...
-
이나경 어린시절 2
프로미스나인 나꼬대장님 자연미인 이나경 유치원시절→초등학생시절→중학생시절
-
통합선발때문에 뽑는 인원도 줄었는데 미치겠네
-
밥먹어야되는대 4
귀찮네
-
다 어디감 8
다 나감? 다 인ㄲ싸임? 다 레전드기만러임? 하아
-
나 지금 시간에 활동 하는디...
-
공스타 공개 8
@study_flover
-
20~22번도 못 풉니다.. 접근은 다 하는데.. 시발점 다시 들어야하나요 양승진...
-
사실 본계가 부계가 되고 공식 본계를 더 늦게만들어서 ㅋㅋㅋㅋㅋㅋ
-
미개봉 새상품 4
=본인
-
연고 모든 과 서성 상경 & 사과계 한양 상경 정도가 유의미하다고 생각하는데 맞져?
-
산스장이 잇음. 자유롭게 출입 가능하고 기구들 그냥 잇음 가난한 고딩을 위한 곳임...
-
제가 정시로 아주대랑 에리카를 넣엇는데 집이 부산이라 다른지역으로...
-
대통령이 그냥 흔한 공무원도 아니고 국가원수인데, 그럼 당연히 자신과 뜻이 다른...
-
비밀 ? 0
?
-
두려워졋서
-
사탐런... 1
현재 생지러인 삼수생입니다... 2025 생1 6 9 수능 1 2 3 등급 맞은...
-
울면서 비추 눌렀다
-
수시러인데 이정도이면 정시의대 어느정도 가능한가요? 2
수시러인데 이정도면 정시로 어디 의대까지 붙을 수 있나요? 설마 납치는 아니겠죠..
-
맞팔 해주려나..
-
학교 다닐 때 공부량이랑 성비 어떻게 되는지 궁금하고 취업 난이도나 취업 방향도 알고 싶습니다!
-
거꾸로해도 이름이 똑같잖아여
-
투투 0
과연
-
하하
-
골목안 배꼽을 주제로한 변주곡 사막을 건너는법 매우 잘생긴 우산 자전거도둑
-
최저는 맞출 수 있을거같은데 학추가 서류20을 보더라구요 생기부를 서어서문으로 써서...
-
걍 다 ㄴㅈ임 0
칫
-
나는 숫자 세는거 밖에 못함. 1,2,3,..
-
이거 ㄹㅇ 잼밋음
-
덕코 탕진.. 6
흠
-
아 왤케 어색하지
-
그림 안 그리면 못 풀겠음
-
. 2
.
-
이렇게 네임드 많이 배출한 과가 있나?
-
연속함수가 아니라 그런건가?
-
수강신청 며칠전에 오티하는거 갔다와서 후딱 짜면 안됨?
-
올해 원서구조가 얼마나 기형적이냐면 원래 가군 연고 나군 서성이 극정배인데 연대에...
26번 정도
26 27 사이
ㅇㅇ
어려운 3점
학평에서는 저것보다 쉬운 4점 봤어요
27 or 29
기출에 비슷한거있지않나?
29번같은데;; 또나만어렵지
29급이긴한데 내가 어렵게 푼건가
개념 이후 단계에서 갑자기 어렵데 느끼신 건
아마 이 문제의 핵심이 급수 개념이라기보다 이차방정식의 실근에 있어서 그런 것 같아요!
이차방정식의 실근이요? 혹시 어떻게 푸셨는지 여쭤봐도 될까용
주어진 곡선의 방정식은 이차식이므로 이 곡선과 직선의 교점을 구하는 방정식은 2차방정식입니다.
따라서
어느 한 교점의 좌표가 주어졌을 때(A_n)
나머지 하나의 교점의 좌표를 구하는 것(A_n+1)
은
이차방정식의 어느 한 실근이 주어졌을 때
나머지 하나의 실근을 구하는 것
과 같고,
이는 이차방정식의 근과 계수와의 관계라는 개념을 끌고 왔을 때 가장 간결한 풀이를 낼 수 있게 해줍니다.
여기까지를 풀이의 전반부라고 합시다.
그러면 후반부는 선분의 길이를 n에 대한 식으로 나타내는 것이겠죠.
저의 의견:
1.
전반부의 결론을 내리기만 하면
후반부는 특별한 사고과정이 필요없다.
(두 점의 좌표가 주어졌을 때 선분의 길이를 작성하는 과정일 뿐이므로)
따라서 전반부를 쉽다고 인식한다면 이 문제가 쉽게 느껴질 것이고, 어렵다고 인식하면 이 문제가 어렵게 느껴질 것이다.
위 답글에서 보였다시피 전반부를 쉽게 해주는 것은 이차방정식의 구조를 인식하고 이차방정식의 근계관을 적용하는 것이다.
2.
심지어 후반부의 계산을 짧게 해주는 데에도 근계관을 이용할 수 있다.
두 점은 모두 곡선 y=x^2 위의 점이므로
두 점의 x좌표의 합과 차만 얻는다면
선분의 길이를 구하는 과정이 편해질 것이다.
곧, 풀이의 전반부는 물론 후반부까지
이차방정식의 실근을 다루는 경험이 다분하다면 쉽게 접근하고 작성할 수 있는 것이다.