미적분 문제 (2000덕)
게시글 주소: https://iu.orbi.kr/00071139139
첫 풀이 2000덕 드리겠습니다!
(+ 자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
굿
-
우석약 합격 7
점공 1등이었는데 장학금은 없네요… 수의대 붙으면 빠집니다!
-
어제 4만 3천덕 -> 오늘 14만덕 돌파함 결론 -> 레테크하라!
-
히히 레어샀당 2
캬캬어페페레어
-
왤케 피곤하지 2
-
44만은 너무한거 아닌교... 불우이웃 모금 받아요...
-
오노추 2
오랜만에 듣는데 개웃기네 대 대 대
-
뭘까요.. 개인적으로는 28 29 30 찍맞 이슈가 크다고 생각하는데 만약 찍어서...
-
많은편일까요? 지원없이 ㅇㅇ..
-
크럭스 컨설팅 올해 컨설팅으로 얼마나 벌었을 것 같나요? 5
오르비 유저분들의 생각이 궁금합니다.
-
반도체 융전 컴솦까진 들어갈 거 같고 전기 미자공 신소재도 어디가서 한양대 높공이다...
-
중앙대 레어는 왜 안보이냐
-
고대 발표 2
내일 몇시 발표인가요?
-
컨설팅메타인가 4
난 오래오래 오르비를 하고 싶구나
-
작년에 설 전에 나욌던거 같은데 내 유일한 희망 ㅠㅠ
-
용돈벌이겸?
-
확통 어떻게 하는지좀 알려주세요.. 감이 안 잡혀요… 지금 이미지쌤 세젤쉬 듣고...
-
아니 4합5인데 그게 평균이 1.14인게 맞나 뭐 평균이니까 꼬리는 은근 낮을지도?...
-
이거 맞음? 대학을 안 다녀봐서모르겟어여 수능 이 굴레를 어케 벗어나는 거임
-
부럽다 이번입시하는사람들
f(x)=0, f(x)=1/2 (사실 찍음요ㅋㅋ gg)
y에 0을 대입해보면 f(x)=2f(x)*f(0) => f==0 or f(0)=1/2
f(0)=1/2인 경우.
x에 0을 대입해보면 f(2y)=f(y).
f(1)=c라고 하자. 그러면 n이 무한대로 갈 때 f(2^n)=c이다.
f(alpha)=c가 아닌 alpha가 존재한다고 치자. (alpha is not 0).
n이 무한대로 갈 때 f(alpha)=f(2^n(alpha))=f(2^n)=c이므로 모순이다.
따라서 모든 0이 아닌 x에 대해서 f(x)=c이고, f는 연속함수, f(0)=1/2이므로, f==1/2밖에 해가 없다.
즉, 모든 해는 f==0, f==1/2.
이거 맞나 미적분을 잘 몰라가지고 ;
정답!
앗싸
어떤 실수 d != 0과 실수 a에 대해 f(a)= d이면, f(a+2*0) = d = 2*d*f(0)이므로 f(0)=1/2이다.
연속의 정의에 따라 실수 ε가 존재하여 |x|<ε이면 |f(x)-1/2|<1/4, 특히 f(x)>1/4인데 n = max([log_2(|a|)-log_2(ε)+1], [log_2(|d|)+3])에 대해 |f(a/2^n)| = |2*f(0)*f(a/2^n)*1/2| = |f(0+2*a/2^n)*1/2| = |f(a/2^(n-1))*1/2| = |f(a/2^(n-2))*1/2^2| = ... = |f(a)| * 1/2^n < |d| *1/|d|*1/4 = 1/4이고 a/2^n < a*ε/a = ε이므로 모순이다.
(단, [x]는 x보다 작은 최대의 정수, max(a, b)는 a와 b 중 최댓값)
한문장은 걍 불가능이라 두문장으로
문제 조건 안쓰고 연속 정의로 함요
근데 f(x)=1/2도 안되는거 아닌가요
아 되는구나
케이스 하나 안봤네요
아 문제를 잘못 읽었네 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
굉장히 엄밀한 증명이네요ㄷㄷ
개망함요
f(0)=1 되는걸로 봐서
정확히 말하자면 두 번째 문장은 ‘f(2x)=2f(x)가 성립하고 f(0)=1/2인 함수는 존재하지 않는다’를 증명한 셈...
사실 이게 더 어려울지도