미적분 문제 (2000덕)
게시글 주소: https://iu.orbi.kr/00071139139
첫 풀이 2000덕 드리겠습니다!
(+ 자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
상시숭배 5
"대황딮"
-
고학부 신설 > 상지한 표본 감소 > 표본 덜 들어왓다 판단하고 진학사가 짜게잡음...
-
난 안주겠지..
-
덕코 기부좀 ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
[단독]경찰, '선관위 중국 간첩 99명 체포' 스카이데일리 수사 착수 2
(서울=뉴스1) 유수연 박혜연 기자 = 중앙선거관리위원회(선관위) 청사에서 중국인...
-
그러게 누칼협? 4
나같은 서민들의 레어 뺏어갈때 알아봤다
-
무휴반 불가능이에여?
-
하하 4
밴인가
-
개졸리네 2
개돌리네 개졸리네 개졸리네
-
확통 커리질문 4
개념강의들으면서 문제 좀 풀고 완강하면 바로 뉴런 들어가도 ㄱㅊ을까요?
-
본가에 가있으면 꽁돈이너무나가지 않나요ㅠ
-
정확히는 연대 69x / 고대 65x 입결하락으로 인한 내려치기는 커뮤니티에서만...
-
800선 복구해야해
-
진짜 해야함?
-
최초합이어도 예비여도 불합이어도 우웅하긴 마찬가지
-
어디가심?
-
어려운 문제는 3
사고과정이 길기 때문에 (물론 아이디어가 매우 어려운 문제도 잇는데 그런 문젠 안...
-
히히 4
레어뺏기
-
급함
f(x)=0, f(x)=1/2 (사실 찍음요ㅋㅋ gg)
y에 0을 대입해보면 f(x)=2f(x)*f(0) => f==0 or f(0)=1/2
f(0)=1/2인 경우.
x에 0을 대입해보면 f(2y)=f(y).
f(1)=c라고 하자. 그러면 n이 무한대로 갈 때 f(2^n)=c이다.
f(alpha)=c가 아닌 alpha가 존재한다고 치자. (alpha is not 0).
n이 무한대로 갈 때 f(alpha)=f(2^n(alpha))=f(2^n)=c이므로 모순이다.
따라서 모든 0이 아닌 x에 대해서 f(x)=c이고, f는 연속함수, f(0)=1/2이므로, f==1/2밖에 해가 없다.
즉, 모든 해는 f==0, f==1/2.
이거 맞나 미적분을 잘 몰라가지고 ;
정답!
앗싸
어떤 실수 d != 0과 실수 a에 대해 f(a)= d이면, f(a+2*0) = d = 2*d*f(0)이므로 f(0)=1/2이다.
연속의 정의에 따라 실수 ε가 존재하여 |x|<ε이면 |f(x)-1/2|<1/4, 특히 f(x)>1/4인데 n = max([log_2(|a|)-log_2(ε)+1], [log_2(|d|)+3])에 대해 |f(a/2^n)| = |2*f(0)*f(a/2^n)*1/2| = |f(0+2*a/2^n)*1/2| = |f(a/2^(n-1))*1/2| = |f(a/2^(n-2))*1/2^2| = ... = |f(a)| * 1/2^n < |d| *1/|d|*1/4 = 1/4이고 a/2^n < a*ε/a = ε이므로 모순이다.
(단, [x]는 x보다 작은 최대의 정수, max(a, b)는 a와 b 중 최댓값)
한문장은 걍 불가능이라 두문장으로
문제 조건 안쓰고 연속 정의로 함요
근데 f(x)=1/2도 안되는거 아닌가요
아 되는구나
케이스 하나 안봤네요
아 문제를 잘못 읽었네 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
굉장히 엄밀한 증명이네요ㄷㄷ
개망함요
f(0)=1 되는걸로 봐서
정확히 말하자면 두 번째 문장은 ‘f(2x)=2f(x)가 성립하고 f(0)=1/2인 함수는 존재하지 않는다’를 증명한 셈...
사실 이게 더 어려울지도