이거풀어보새요
게시글 주소: https://orbi.kr/00070884019


난 너무 찝찝하게풂.
개인적으로 뭐처럼 보이는거 직관으로 미리 찍어놓고 그게되는이유를 논리 끼워맞춰서 풀어내는거보다
정공법으로 논리적용해서 정방향으로 뚫어버리는걸 좋아하는데
그러질못함
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현역 국어 4등급 강기분 공부법 제발 도와주세요.. 1
제목처럼 강기분 공부를 하고 있습니다 강기분을 어떻게 공부하냐면 먼저 시간 재고...
-
유급하면 되나요? 어떻게 되는거죠
-
난 이민가기 싫은데 침몰하는 배에서 가만히 있는 건 아닌거같아
-
부모님은 날 그늘없이 키우셨는데 걍 내가 그렇게 못자란듯 내자신이 원망스럽다
-
정보글) 본인이 갤럭시 혹은 안드로이드 유저이면서 수험생인데 인터넷 조절을 못한다면 볼 것 4
안녕하세요, 이제부터 글쓰기 편하게 반말하도록 하겠다. 원래 인터넷에 글 싸는 것...
-
지문분석하고 이런건 필요없나요?
-
2025년 3월 4주차 韓日美全 음악 차트 TOP10 (+3월 3주차 주간VOCAL Character 랭킹) 2
2025년 3월 3주차 차트: https://orbi.kr/00072656758...
-
어쩔수없긴해
-
피램이랑 실모6개만 풀고 24 5 -> 25 1 이 가능하다니까??
-
요새 재릅이나 천박하고 수위 높은거 앵간하면 제재 안 해서 걍 그쪽으로 생각회로가 돌도록 함
-
등록해서 한 달 동안 재밌게 다녔지만 공부가 제 적성에 전혀 맞지 않고, 계속...
-
화학 ㅈ댄거같다 4
최근 생각이다.
-
국어 3
예술 경제 기술 쉬운 문학, 언매 수학 쉽게, 확통 어렵게 영어 1등급 비율 10%...
-
과외 시간이 오후 3시라 진짜 애매함 만약 과외 시간 옮길 수 있다면 일요일에 몇...
-
실모 뭐해야함 0
학교에서 D.Archive,constant, D.Fine, D. Fine...
-
추천하시나용
-
어떻게해야할까.. 슬프다 ㅠ
-
시대인재 물리 0
시대인재라이브로 현정훈 듣는데 강좌만 뜨는데 볼텍스랑 브릿지는 어디서 살 수 있나요?
-
진짜 되긴함
성관계요?
문제풀어보셈
화질 에바
다시올림요
32 ?
정공법 ㄱㄴ
ㄱㅁ
설명의 편의를 위해 e^(ax²+bx+c)=g(x)라 하겠음
f(x)는 (가)에 의해 (2, 0) 점대칭
(나)에 의해, 2|f'(x)|≤f'(8)-f'(0)
x에 0과 8을 대입하면 f'(0)≤0, f'(8)≥0
부호를 감안해 절댓값을 씌우면
2|f'(x)|≤|f'(0)|+|f'(8)|
따라서 |f'(0)|=|f'(8)|이며 이는 |f'(x)|의 최댓값임
f'(0)은 최솟값, f'(8)=f'(-4)는 최댓값임
g'(x)=(2ax+b)e^(ax²+bx+c)
g''(x)=(4a²x²+4abx+2a+b²)e^(ax²+bx+c)
f'(-4)가 f'(x)의 최댓값이므로
g'(-4)는 g'(x)의 극댓값, g''(-4)=0이며
g''(x)는 x=-4 부근에서 +→-로 부호가 바뀜
f(x)의 x=0에서의 좌미분계수가 g'(0)가 같으며
f'(0)이 존재하므로 f'(0)=g'(0)
따라서 g'(-4)+g'(0)=0
g'(x)는 x=-4에서'만' 최댓값을 갖고, 점대칭함수이므로 g'(-4)+g'(x)=0을 만족하는 x는 하나뿐임
이를 만족하는 x가 0이므로
따라서 g'(x)는 (-2, 0)에서 점대칭, -b/2a=-2
g''(-4)=0과 연립하면 a=-1/8, b=-1/2
f(0)=e^c, f'(0)=-e^c/2
f(2)=0이므로 f'(0)이 f'(x)의 최솟값임에 위배되지 않으면서 f(2)=0이려면 f(x)는 0~2에서 1차함수임
정적분값을 이용해 c를 구하면 c=2
따라서 c/ab=32
사진을 찍을 수 없고 패드나 노트처럼 필기가 용이하지도 않아서 부득이하게 글로 풀어썼음
정성추