다들 수학 제일 극혐하는 파트가 어딘가요
게시글 주소: https://iu.orbi.kr/00070210970
저는 수열이랑 수2 접선활용쪽
수열은 그냥 극혐하는 유전자가 있는거같고 수2접선쪽 앞에는 진짜 그냥 계산밖에 없어서 싫음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서성한 자연과학계열 입학하려고 하는데 혹시 군대에서 1년 더 공부해서 동일대학...
-
수퍼소닉 히트쳤어도 들리는 소문으로 보면 그전까지 정산 못받고 국내 앨범 9만장밖에...
-
시대가 틀렸으면 좋겠다 제발
-
훈식t 개념테크만 1강 들어봤는데 ㄱㅊ은거같아서 풀커리 타려는데 훈식t 기출...
-
공군 군수 0
23수능 때 현역이었는데 그날 밤새고 시험 봐서 컨디션이 좀 안 좋았고 결과는...
-
미루고미루다 드디어 시계줄을 가죽으로 바꿨기때문입니다
-
에반게리온 4
백화점 구경하다가 마하그리드랑 콜라보한거 우연히 발견했네요 옷도 예쁜거 많더라구요
-
서성한에서 취업면에서 어디가 나을까요?
-
“이제 18세, 다시 시작하면 돼” 한강 투신하려는 고3 구한 시민 10
[길] 거북이 잡는 꿈 꾸다 깨 새벽 산책 동호대교 난간 매달린 사람 발견 수능...
-
고1 국어 모고7등급인데 풀어야할 문제집이나 인강(대성마이맥)추천해주실만한거 다들 있으신가요
-
최악의 경우 언매 123, 미적 134 로미오식 정상적 경우 언매 125, 미적...
-
솔직히 맘에안들긴 하는데 그냥 한번 던져봄 10만원 받고싶어요
-
공군가산점에쓸거라 1점만받고싶은데 기출문제집사서 박치기하면되나?
-
파스타
-
뀨뀨 6
뀨우
-
사랑했어요 부르면서 맥주병째들고마셔요님들아살려주세요
-
다이어트12일차 2
7천보 걷기+피티4n분…? 인생쓰네요 운동열심히할려구요 저녁 너무 쳐먹어서 큰일남ㅋㅋ
-
금주하니까 미칠꺼같음 18
맥주가없으니불안해
-
왜 의약만 좌석 고르게 해주는지… 의문이다 천재들은 자유로운 영혼이라 그러는 게 분명하다
-
여자 비율이 더 높다길래 기대중 ㅎ..
-
이거 3개 책 내년에 써도 되나요?
-
올릴만한 공부량이 아니라서 십덕 글 쓰는 중 ㅁㅌㅊ? +네루상의 탈옥을 모르다니 실망이양 흥
-
뀨뀨 11
-
저도 맞팔구합니다 13
잡담 태그 잘 달아요
-
뻘글도 계속 올리고
-
역함수의 교점이 y=x위에 있는지 판별할 수 있다. 0
[1] 학원에서 역함수의 교점이 y=x위에만 있는 곳은 아니란걸 배우고 문제 풀때...
-
예비 고3 수능 미적 27 28 29 30 공통 20 21 22 틀입니다 김범준...
-
시대 최종 컷 수정 34
이게 최종적으로 시대팀이 추정하는 컷이라네요
-
그냥 이젠 될때까지한다마인드 근데부모님이절대반대하실것같긴함
-
벌어서 하시던 분이 계셨는데...
-
제발
-
가세연 통장 가압류함 ㅋㅋㅋㅋ
-
수학강사 강윤구입니다. 제가 어제 Qna 답변을 달면서 바로 잡아야 할 부분이...
-
지듣노 9
알아보면 씹덕
-
선물 수익 인증 3
괜히 대학나와
-
옯만추특 11
나는 안해주더라.. 아무리 그래도 거를건 거르나봄
-
공1미1 92랑 미2 92이랑 누가 더 잘 나옴?
-
이 시대 컷대로 하면 500.xx 될것같음 이거 인문학부 가능하려나? 진짜 ㅈㄴ 쫄리네
-
chess.com으로 하는 중인데 레이팅 300이 간당간당해요
-
입시 질문받아요 26
슬슬 학교/학과 선택 질문이 좀 보이네요 저는 서울대 공대/자연대에서 썩고 있는...
-
오늘 하루 요약 6
시계와 눈싸움
-
특히 수학 이번에 18^2=364 쓴것도 키포인트 잡고 킷타ww 하다가 혼자서...
-
고우시다
-
1등급 나오나요?
-
전 이나경아일릿민주
-
아 머리 아파 1
아아아아아아
-
고딩때는 남자 싫다고 남친 있는애한테 남자 왜만나냐하고 아이돌 덕질하라는 새끼...
-
궁금쓰..
삼각함수 좋아요
노베킬러고트
저런 힘내세요
도형까진 할만한데
사인 코사인 그래프 지멋대로 움직여놓고 교점 찾는 문제가 참....
아 이거 저만 이런거 아니였네요 삼각방정식 그냥 패고시픔
이번엔 여기서 딱히 걸릴 만한 문제가 안 나왔으니 다행이지
수열의귀납적정의
크악노가다시러
수열 자체도 극혐인데 그 안에 더 싫은게 귀납수열 크아악
삼각함수 도형이요.. 안보이면 그 시험은 조진거고
보이면 그 시험 잘본거인 수준으로 버거움
도형은 의외로 행동강령 정리하면 잘보임
나중에 칼럼이나 써볼까
2등급따리가 칼럼써도되나
전 수열이 제일 재밌던데 ㅠㅠ
기하로 극복하시는건 어떰
악마;
솔직하게 확통 경우의 수가 킬러로 나오면 개빡일듯 ㅋㅋㅋㅋ 28 수능이 매우 기대되는 부분
내신때 확통하다가 토하는줄
28수능 이후라고 해도 경우의 수가 킬러로 나올 가능성은 거의 없다 생각해요
걍 지금 수능에서 선택과목 확통 고른 거랑 거의 같은 범위인데 그대로 수1수2로 변별할 듯
역사적으로 경우의 수, 순열, 조합이 수능 범위가 아니었던 때가 더 드문데 킬러급으로 나온 건 거의 없었죠...
지금 미적분 표본까지 변별해야하는데 수1수2만으로 한다고?
상황이 좀 다르죠
그냥 옛날 B형시절처럼 1컷 96~92 정도로 지금보다 1컷이 높은 수준으로 낼 가능성이 훨씬 높죠
옛날 가형/B형이 표본수준이 낮았던 것도 아니고, 수1/수2가 어려운 문제 못 내는 파트도 아니고 (사설들 보면 미적분 쉬운 회차도 1컷 77 찍고 있는 거 예사잖아요)
옛날에는 미기가 필수여서 굳이 확통으로 변별안한거 아닌가요 수1/수2를 지금보다 고이게 내면 그냥 노마더인데 ㅋㄱㅋㅋ..그렇다고 28체제에서 컷을 높이면 변별이 안되고
수2는 솔직히 이미 한계치까지 간 거 같긴 한데 ㅋㅋㅋ 수1은 아직 무궁무진하다 봅니다
확통, 그 중에서도 조합론 파트는 평가원이 일부러 선을 넘지 않는 거라고 생각해서요.. 예전 스티커 문제 때도 '사과'한 적도 있다 들었고
뭐 이론적으로야 KMO 조합론 문제 그대로 갖다 박아놔도 교육과정 부합하잖아요
가나형 킬러몰빵 시절 나형에서
그냥 확통 킬러 내는 게 아마 교수급 출제자 입장에서 더 편할텐데
그런 거 냅두고 170930(나) 같은 이상한 노가다 문제를 내는 걸 택한 이유는 있다 생각해요
어디까지나 개인 의견임을 전제하자면
올해 6평 확통 28번, 30번, 23학년도 확통 30번이나
17~21 확통 중에서 가장 어려웠던 문제들 정도가 난도 맥시멈이 아닐까 싶어요
그리고 위에도 말했지만 저는 전공통 체제로 가면 옛날처럼 1컷 96, 92 정도를 목표로 출제할 가능성이 훨씬 높다 생각해요
지금처럼 1컷 84 전후가 일반적이게 된 것 자체가 선택체제 도입 후이고,
22예비시행 문제를 보면 이는 선택체제 도입 후의 입시 변화를 고려한 의도적인 변화라고 생각해서요
미분기하 ㄷㄷ
선 안넘고도 충분히 어렵게 할 수 있는 영역이라 ㅋㄱㅋㅋㅋ..적어도 확실한건 지금까지 확통시험지 중에서는 제일 어려울 것 같습니다
그리고 이 짓을 다시 하진 않을 거 같긴 하지만
수1 범위에서는 유서가 깊은 끝판왕 변별문제를 낼 수 있죠
"격자점"
대학수학능력시험 수학 영역의 모든 응시자가 대수, 미적분I, 확률과통계 (2015 개정 교육과정 기준 수학1, 수학2, 확률과통계) 범위 내에서 문항을 해결하고 변별되어 원활한 대학 입시가 이루어지도록 하려면 확률과통계에서 난이도가 매우 높은 경우의 수 문항을 출제하는 것이 불가피하지 않을까 생각했는데, 그동안의 기출문제에 근거를 두고 다르게 예상하시는군요
미적분I의 경우 이미 다양한 사고 방식이 다루어졌다는 데 동의합니다. 대수에서는 고2 전국연합학력평가 시험지에서 확인할 수 있는, 그러나 아직 수능에서는 본격적으로 다루어지지 않은 사고 과정과 상황을 출제하면 28, 29, 30수능 정도에서는 충분한 변별력을 확보할 수 있지 않을까 조심스레 생각해 봅니다.
개인적으로 2022 개정 교육과정에 기반한 새 수능의 핵심은 '융합'에 있을 것이라고 생각합니다. 조건 A, B, C를 만족시키는 모든 삼차함수 중 한 가지를 골랐을 때 그것이 조건 D까지 만족시킬 확률을 구하라는 문제나, 구체적인 수치를 묻지 않고 선지 판단을 시키던 2015 개정 교육과정 물리학I처럼 정확한 접점의 x좌표를 구하도록 하지 않되 지수함수와 로그함수 같은 초월함수의 접선의 방정식을 슬쩍 다루게 한다거나...
25수능을 향해오며 점점 공통수학1, 공통수학2 (2015 개정 교육과정 수학(상), 수학(하)) 의 비중이 커져왔다고 느끼는데, 이 흐름을 따라간다면 두 2x2 행렬의 성분으로 서로 다른 여덟 개의 함수를 제시하고 두 행렬을 곱해 얻어진 행렬과 네 실수를 성분으로 하는 2x2 행렬이 같다는 조건을 주어 연립방정식의 해를 구하도록 하는 문항도 새 시험지에서 확인해 볼 수 있지 않을까, 물론 행렬식도 배우지 않고 가우스 소거법도 배우지 않기 때문에 이러한 방향으로 문항이 출제된다면 교육과정 선밟기를 첨예하게 해야할 것 같긴 합니다만
무등비 삼도극
그거 아직도 나오나요
교과 내용이긴 하죠
모든 ~의 합
여러 개 구하기 싫은데
지로삼 미만 잡
09교과 시절 미2안하면 저 내용 첨 접해도 어려움
전 미적분.. 계속 틀리네요
특히 적분
제일 첫인상 흉악했던건 지로삼이요!
현대대수요
헉
가환환을 탁
가환환이 commutative ring인가
마자용
진짜 수학 한글 번역 기괴한 거 같음
옹골집합 못참는데..
옹골집합 이러는 거 보니까 너무 쓸데없이 김김계 본 수학과 같네
수리 복전하세요?
미적 전부요
수열 지로 접선계산
기트남어 수1 미적 도형은 개재밌음
공간도형
적분
수열
자연수의 덧셈과 뺄셈
이 모든 고통의 시발점
수학은 다 재밌는듯. 다만 문제가 어려울뿐...
치환적분 부분적분 너무싫음 계산실수 무조건 터져서 .. 계산 길어지면 뇌절
중적분
지수로그함수 그래프
정적분으로 정의된 함수/지수로그 쌩계산/공간도형