오공완 2024/11/7
게시글 주소: https://iu.orbi.kr/00069802007
너무 길게 안쓰고 간단하게 적어볼 예정~
1. 공부한 거 복기(복습 차원)
<수학>
- 함수f의 한 점에서의 미분계수(평균변화율의 극한으로 표현된 식)을, f의 도함수를 구해 대입하는 방식이 아닌,
just 극한식으로써 처리할 수 있다!
Ex) 삼각함수의 한 점에서의 미분계수를 덧셈정리를 통해 구하기,
로그함수의 미분계수를 자연상수 e를 구하는 극한식으로 유 도하여 극한값 구하기
- 문제에서 주어진 함수 f 자체가 극한식으로 주어진 경우도 있다.
--> 변수 구분하여 극한값을 구하면, 비로소 함수의 형태가 나온다.
- 역함수의 미분법은 <식 2개>이다!!
f(a)=b & g(b)=a / f'(a) = 1/g'(b)
앞에 식을 안써서 못 푼 문제가 있는데, 두 식 다 쓰기를 유념하자...!
- 진짜 너무x100 지엽이지만...
일대일대응을 만족시키는 범위 내에서 정의된 sin함수와
cos함수의 "역함수의 도함수"를 함수식으로 표현가능하다!
이 정도..?
2. 아쉬운 점
오늘 너무 진도를 느리게 나갔다. 수능은 속도전이니까
최대한 빠르게 풀고 넘어가자. 그리고 내년 수능이 목표라고 여유부리는 태도는 지양하자!
+ 그리고 되도록 매일 올리면 좋을 것 같다. 일단 봐주시는 분들이 있으니까 스스로 자극되고, 복습은 덤이요, 장기전 지치지 않고 잘해볼 수 있을 것만 같은 생각이 든다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
싸움 2
현피 주먹 싸대기 머리채 발차기
-
나는 헤겔이 싫음! 나는 에이어가 싫음! 나는 한비자가 싫음!
-
강해rrrrrrr륀
-
이 춤 개힙한듯 3
샤워할때 연슺해야지
-
렛ㅈㅡ고
-
기하뉴비라 과목 전망이 궁금합니다 !
-
수능에 비하면 뭐가더빡셈 ? 항상 40초반이라 너무 불안쓰
-
팡일쌤이 1
1주일 동안 인터넷 끊으라구 했어요 그래서 낼부터 오르비를 중단..!
-
근거 1. 범작가가 이미 거기에서 해설강의 올리면서 활동하는 중 근거 2. 작년에는...
-
수능 수학,영어 실모는 어떤 것이 유명함? 내년에 수능 하며 기출문제집,실모 한 번 풀어보고 싶음
-
2번째로 안나온 번호 찍는게 정배임?
-
급식 업체와 회사 간에 본계약이 체결된다면 서로가 서로의 채권자이자 채무자이고,...
-
내가 13번까지 다맞았거든 확통은 23처람 나오면 안되고...
-
저 5,6회 방금 풀었는데 진심 제가 풀어본 사문실모 중에 제일 어려운거 같은데...
-
괜찮은 사탐 미리 추천받아요
-
탐구과목 2등급 받기 가장 쉬운 과목 뭐라고 생각하시나요 4
과탐만 해봐서 모르겠어요
-
지구 제발 1
지구 급한데 도와주세요ㅠㅠ 유자분 강의 절반정도 듣고 실전문제 강의 못...
-
그냥 목표치를 낮추기로 함 ㅠㅠ 이감 이 ㅅㅂ련 때문에 자존감 떨어짐
-
일본버튜버는 졸업후 전생하는경우도 있어요
읽어주셔서 감사해요.