[자작] 간단한 수열 문제 하나 풀어보세요
게시글 주소: https://iu.orbi.kr/00069647252
공모하기에는 개인적으로도 객관적으로도 문제가 많이 아쉬워서 여기에라도 올려봅니다..!
"두 집합이 같다" 와 수열을 합치니까 적지 않은 수험생들이 실수를 하더라구용 ㅇㅅㅇ
당장 거창한 아이디어가 없어서 기본 구조만 후다닥 만들어서 탄생한 문항..
(2024학년도 6월 12번 발문 참고해봤습니다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 이 상황 자체가 뉴스에 생중계 되고 있다는거 자체가 엉성한 계엄. 라떼는...
-
"尹정부가 계엄 준비" 홀로 외치던 김민석 재조명...미리 알았나 1
윤석열 대통령이 3일밤 비상계엄을 전격 선포하자 지난 8월부터 '현 정부가 계엄령을...
-
대통령 능지는 둘째치고 국방부장관도 능지박살이라는 말이되는데 이건 말이안될거같은데
-
이렇게 허술하다고 난 뭔가 더 있다고 본다
-
내가 윤석열보다 똑똑함
-
실시간 바로 묻혀버림 ㅋㅋ 정상화의 신 대석열
-
플랜C는 뭐냐
-
임기 절반밖에 안했는데도 기억에 빡 남네
-
다들잘자 5
굿나잇이야
-
여름방학을 1주일 해서
-
거의 끝나긴 했는데
-
잘까 그냥 0
에휴 이나라가 그럼 그렇지. . .
-
알코올 밈은 치워두고 그래도 이렇게 될 줄 알고 세운 계획이나 다른 생각이 있어서...
-
음모론 제외하면 순수 멍청 이슈 말고는 설명이 안되니까 3
오히려 뭔가 숨겨진 스토리가 있나 의심하게 됨 아무리 멍청해도 이렇게까지 멍청한 짓을 할까
-
기출 모의고사 복습 귀찮으신가요? 모플 한번 써보실래요? 0
안녕하세요 쉽고 빠른 모의고사 복습, 모플의 개발자 라쿠입니다. 모플은 쉽고 빠른...
-
그냥 이렇게 어설프게 한다고?? 꿍꿍이가 있을수도 있겠지만 그것보단 다른 이유가...
-
대체 어느정도의 베일에 쌓여있길래 계엄령을….
-
윤석열 얘기만 4시간 하다가 집오겠네
-
미안해 관심 좀 줄게
-
와....
-
이대로라면 국회에서 윤석열 대통령 탄핵 소추하고 헌재에서 의결하는건 시간문제인거...
-
ㅎㅎ
-
이과인데 고대를 온다면 안암공전의 언덕맛을 볼거에요
-
10시즌급 개노잼 같아보이는디
-
닉변 완 8
민족고대를 달라
-
근혜때마냥 탄핵집회 화력 안나와서 장작 던진건가
-
ㄷㄷ..
-
설치기원1일차 6
컷 10점 정도만 완화해주라ㅎㅎ..
-
대통령이 이정도까지 멍청할 수 있나 여기서 끝이라고..? 서울법대 검찰총장 한사람인데
-
님들이 대통령이면 안누름? ㅋㅋ
-
고대기원4일차 6
계엄메타 잠잠해진 틈을 타
-
음음 비상계엄도 서울대 합격을 막지 못해
-
개인적인의견인데 잠시조정은오더라도 결국1450원까지는찍을거같음...
-
엄 ㅋㅋ
-
9수했다는것도 구라인듯 한 20수는 해야될 머리인거같은데
-
와.. 0
ㄷㄷ
-
대선부터 총선까지 2번으로 도배했는데 살려주십시오
-
내가 282930을 맞출수있을까
-
너무 황당하네 4
너무 wwe같음 진짜 너무 각본같은데 이거 진짜 뭐임 의도를 모르겠음 진짜로
-
이쯤에서 지지정당 ㄱㄱ 11
.
-
국가비상사태라며
-
수학 고정백 만들면 돌아올게오, 아마 금방 올꺼임뇨
-
환율떡상해서개이득이네 라고밖에생각안했었음
-
예 작년에 있었던 일련의 사건으로 인해서 지문이 부드럽게 읽힌 친구들이 많을겁니다....
2번??
매력적 오답에 당첨되셨습니다
왜 87이 나오지
저도 87나옴
1,-3,4,-5,...,-9,2
87 맞아용
왜 선지에 없나요.. 이거때매 계속 고민했네요
아
선지 편집 실수가.. ㅠㅠㅠㅠㅠㅠㅠ
알려주셔서 감사합니다
밑에 성함있어용
알려주셔서 감사합니다 !!
옆동네에 이미 이름 걸고 실모/N제 배부한 적 있어서 괜찮습니다 !!
풀이는 간단합니다.
구하는 합을 S라 하면 삼각부등식에 의해
S≤(|a_1|+|a_2|)+(|a_2|+|a_3|)+...+(|a_8|+|a_9|)=2*(|a_1|+|a_2|+...+|a_9|)-|a_1|-|a_9|
=90-|a_1|-|a_9|≤90-1-2=87.
아 이런걸 삼각 부등식이라고 부르나요 ??
만들 때 했던 생각이랑 똑같은데 명칭이 있는지는 몰랐네요 ㅇㅅㅇ
넵 삼각형의 세 변을 x,y,z라 할 때 z가 최대이면, z≤x+y라는 거죠. (등호는 넓이가 0)
이를 벡터 공간에서 보면 ||z||=||x+y||≤||x||+||y||인 것이고요.
x,y가 단순히 실수일 때 |x+y|≤|x|+|y|라는 식과 같아지는 것이죠.
오오 새로운거 잘 배워갑니다 !!