[칼럼] 이 기호를 꼭 기억해 주세요 - 실수 방지
게시글 주소: https://iu.orbi.kr/00069477248
고3 때 저도 실수를 밥 먹듯 했습니다
1.
이런 실수해 본 학생들이 있나요?
유형 1
아.. 문제에서 결국 구하라고 한 건
k가 아니라 3k였네..
아니면 이런 실수는요?
유형 2
아.. 내가 구한 값이 4라서
아무 생각 없이 ④번을 골라버렸네..
[선택지]
① -2 ② 2 ③ 4 ④ 6 ⑤ 9
수학을 일찌감치 포기한 학생이 아니라면 거의 모든 학생들이 이런 실수를 한 경험이 있을 거예요. 문제집을 풀면서 또는 실전에서 말이죠. 채점하다 이런 어이없는 실수를 했다는 사실을 깨달으면 ‘진짜 왜 이랬지?’ 싶지만, 그렇게 가벼이 넘길 일이 아닙니다.
나도 모르는 사이 내가 마땅히 얻어야 할 점수를 놓쳐버릴 가능성이 존재한다는 사실을 인정하고, 찰나의 순간의 잘못된 판단으로 인해 점수를 잃는 일이 없도록 해야 합니다. 수능에서 이런 일을 겪으면 얼마나 억울할지 생각해 보세요.
그래서 이번 칼럼에서는 여러분이 수능 당일 이러한 일을 겪지 않을 수 있게 만들어 줄 하나의 팁을 준비했습니다. 수능이 다가오는 지금 시점에 알려드리기 위해 아껴두었던 팁이니 남은 기간 잘 활용하시길 바랍니다.
2.
이 기호를 꼭 기억해 주세요.
동그라미 안에 구라는 글자가 적혀 있는 이 기호의 이름은 동구라미입니다. (제가 붙인 이름인데.. 귀여운 이름이지 않나요?ㅎㅎ)
4점 문제를 풀다 보면 우리는 미지수를 여러 개 설정하게 됩니다. 그리고 치환까지 하게 되는 경우도 있죠. 그래서 우리는 문제를 풀다가 내가 최종적으로 구해야 하는 값, 즉 문제에서 요구하는 값이 무엇인지 순간적으로 착각해 버리는 실수를 하게 됩니다.
유형 1
아.. 문제에서 결국 구하라고 한 건
k가 아니라 3k였네..
그런데 만약 동구라미가 있다면 어떨까요? 저는 모든 문제의 풀이의 마지막에 동구라미를 적었습니다. 1초도 안 걸리는 루틴이었죠. 그런데 그 효과는 엄청났습니다.
이 동구라미를 적으면서 문제에서 구하라고 한 것이 무엇인지를 명확하게 한 번 더 확인하게 되었습니다. 그렇기에 유형 1과 같은 실수는 더 이상 하지 않게 되었죠.
어렵지 않죠?
3.
눈치 빠른 학생들은 이미 예상했을 겁니다. 그냥 구라고 적지 않고 굳이 동그라미 안에 구라는 글자를 적은 이유를 말이죠.
유형 2
아.. 내가 구한 값이 4라서
아무 생각 없이 ④번을 골라버렸네..
[선택지]
① -2 ② 2 ③ 4 ④ 6 ⑤ 9
유형 2와 같은 실수가 일어나는 이유를 잘 생각해 보세요. 별 게 아닙니다. 딱, 동그라미 차이입니다. 숫자는 같잖아요. 그래서 동구라미를 쓰는 겁니다.
내가 동구라미 옆에 쓴 4는 그냥 4입니다. 4 옆에 동그라미가 떡하니 있으니(내가 그렇게 적었으니) 4와 ④를 의식적으로 구분할 수 있게 된 거예요. 그러니 유형 2와 같은 어이없는 실수를 할 가능성이 사라질 수밖에 없는 것이죠.
4.
좀 유치한가요? 원래 간절하면 유치해집니다. 재수생 시절 저는 정말 정말 유치했습니다. 정말 정말 간절했으니까요.
꼭 그렇게까지 해야 해?
남들이 저에게 이런 말을 할 때면, 이렇게 해서라도 이루고 싶은 목표가 있다고 말했습니다. 간절했으니까요. 그 간절함이 감정에 머물러 있는 것이 아니라 행동으로 이어질 때, 우리는 남들과 좀 달라집니다. 저 같은 경우에는 많이 유치해졌었죠.
이제 곧 수능을 앞둔 여러분의 모습은 어떠한가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 73-74점 정도 나오던데 설마....?
-
작년처럼 보낼바엔 죽어버리는게 나을지도
-
수학 말하는거 사실 9모때 4등급(50점대였음)인가 받고 충격먹어서 거의 수학...
-
말리면 탱커탓 ㅈ되네
-
레전드 민지네컷 10
캬
-
본인이 그게 방해된다고 느끼는 순간 방해되는거고 방해 안되고 이정도는 커버할 수...
-
12월동안 운동 강추함.....현역땐 어떻게든 매일 학교 갔던거같은데 재수생...
-
실채가 나와야 알겠지만 가채점 예상이 사실이라면 어떻게든 확통 억빠에 억빠를 더해서...
-
탐구가 얼마나 불일지 예상도 안됨 ㅋㅋㅋ 08년생들은 단체 안락사일듯
-
국어수학 열씨미 풀고 영어탐구 기둥세워서 나름 등급컷의 균형의 수호자 역할을 했읍니다
-
화작 0
부정적인 글들이 많이 보이던데 98점 백분위 99 뜰 일은 이제 없을까요? 처음에 설렜네..
-
내 예상인데 상위권대학은 무조건 미적과탐 가산점 올리거나 확통 사탐 막는다
-
더 자면 너무 늦을 듯 말년이어도 선은 지켜야지
-
노래방을 갔다가 오면 다음날 목이 너무 아파요
-
진짜 27번이 수호해준건가 음
-
⭐️틱ㅌ라이트 오늘 접속안한분 45,000원 중복 지급! 5
기존 회원 한정 이벤트입니다 이벤트 링크 통해 접속하시고 45,000원 받으세요...
-
1컷이랑 2컷 2컷이랑 3컷 차이가 좀 크게나오는듯 업체들 전부 평균내면 화작기준...
-
뭐해? 0
올려
-
하.. 모르겠고 1
잠이나 자자
-
최종시점 탄지로 레벨 18
어느정도?(오니모드 제외)
-
화확영생윤사문 백분위 90 97 2 94 100 원점수 89 96 2 39 50...
-
11월 할 것 9
친구들과 여행 전역복ㆍ전역모 맞추기 운동 재개 또 뭐있지 추천 좀
-
진지하게 확통 1컷 96 지금 다시 보니까 100은 너무 뇌절이었음 ㅈㅅ 화작...
-
여태까지 내 마음가짐은 별로 의미 없고 실력이 전부라고 생각했는데 좀 반성하게 됨....
-
치이네
-
철학적 똥글 7
ntr은 순애다 - 라는 주장을 하는 친구가 잇엇음뇨 로미오와 줄리엣처럼 진정한...
-
연애말고 2
미쿠하세요
-
단독토벌 가능?
-
내가 쓴 글 8
모바일에서 내가 쓴 글 어케 봐요? 일단은 제목 기억해서 검색으로 찾아보는데..
-
아 너무 웃김 0
옆에 형이 ㅈㄴ 웃기네를 아 미안 개웃기네로 순화할게 하는데 이 형 미치겠네ㅋㅋㅋㅋ
-
정시 예상 등급컷 의문사 안당할라면 원점수 등급컷보다 표점 등급컷 보는 게 더 정확하겠죠?
-
생명 1등급은 안받아도 되는데 2등급은 받을수 있으려나.. 고2 내신...
-
왜 인생이 점점 꼴박하고 있는가,,,
-
수학 3받고 경희대 의대간 새끼 계속뜨는데 너무 화가남
-
있어 뭔가 대학생되면 술 아침까지 마시고 연애하고 이런 거 사회가 대부분...
-
솔직히 이제 언매 미적이 표점에서 역차별 당하는 느낌이 강함 10
작년 언매미적 올해 화작미적으로 수능봤고 수논준비하면서 확통도 충분히 공부하고...
-
미쿠 이것저것 2
미쿠 좀 찬양해줘라
-
원점수 언매 91 미적 100 영어 1등급 물1 47 화1 45
-
롤 되게 어럽네 2
오랜만에 하니까 사일 아칼리 말고는 잘 못하겠네요
-
과메기를 다 널고 나서야 늦은 저녁 식사가 시작됩니다. 0
식은밥을 넣어 마시듯이 먹었던 물회는 포항사나이들의 음식이었습니다.
-
존나 섹시한 뇌섹 근육질 남자가 소속과도 안밝힌상태로 첩보영화찍는 기분이지 않을까...
-
힐러충특 4
좆같이하고 아가리톰
-
화학에서 바꾸려는데 뭐로 바꿀 까요? 지학은 좀 ㄱㅊ게 하는데 화학이 극복이 안됌 ㅅㅂ!
-
오늘실버가야지 24
-
ㅇㅇ..
-
올해 수능 기준 수학 공통 12~15 , 20~22 틀린 수준이면 실전개념 먼저...
-
4드문해 0
여기서 4규 문해전 시즌2 풀라는거임? 시즌1인가
저도 구=인테그랄~=8 이런 식으로 많이 써요
저도 ㅋㅋㅋ 2*답=96 이런거 ㅎㅎ
잉 왜 여기 달렸지
오 전 네모 쳐서 똑같이 하고있어요
오 그 네모의 이름도 지어주고 싶네요.. 고민해보겠습니다
구했네모
나왔네모
딱됐네모
ㅋㅋㅋㅋ "구했네모" 너무 좋은데요?
구했네모! 구했모! 구넸모!
티모^ㅗ^
오 꿀팁 감사합니다... 한번 실천해볼게요...!
위 댓글에서 알 수 있듯이 다른 분들도 잘 활용 중이라고 하시네요! 도움이 되길 바랍니다 :)
저도 근데 이런거 진짜 많아 틀림 ㅋㅋㅋㅋㅋ 암튼 잘 요긴하게 사용해봐야겠네요
이미 다 하고있더라죠 ㅎㅎ
크... 역시 실력자들은 다 하고 있는 것..
그리고 저는 영어나 국어에서 적절하지않은것을 고르시오 할때
않은에 x자 치는데 이런건 별로인가요?
적절한거 적절x 헷갈릴까봐여
제가 학생들에게 제발 하라고 하는 거예요! 마지막에 그 기호 한 번 확인해 보는 게 뼈아픈 실수를 막아주는 부적과 같죠
헷갈릴거 같으면 적절에 세모 치는거 추천
저도 항상 하는 거군뇨 저런 실수는 안하는 이유가 있었군
귀찮다고 안 하는 다른 학생들에게 댓글들 쭉 보여줘야겠어요..!
이게 맞따
이런 방법이....!!
개념서나 강의에서 찾을수없는 이런 실전 팁들이 정말 큰 가치를 가지는거같아요 잘보고갑니다 ㅎ
우진쌤 풀이에도 구에 네모친거 있더라고요
동구라미 완전 귀엽다
현우진이 그렇게 하길래 저도 했는데 좋드라구요
예를 들면
구 = f(2) = 4a + 2b + 3
이런식으로 해놓고
b = 3a + 1 이런 관계식 나오면
구 = f(2) = 4a + 2b + 3 = 10a + 5
이런식으로 미리미리 계산할수있는건 계산해놓고 a값만 구하기..
그러면 마지막에 계신실수하거나 시간압박때문에 머리아플일도 줄어서 ㅎ