무브
오르비
아톰
내 태그 설정
sa이코패스 [1325705] · MS 2024 · 쪽지
게시글 주소: https://iu.orbi.kr/00069471012
간단한 확통 문제입니다
난이도 :2/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
답 0 맞나요?
가짓수는 각각 720, 720.
다르게 나오는 것 같아요!
답 240인가요.
좀 작습니다...
아 ㅋㅋ. 어디서 이상한지 알 것 같네요, 오늘 상태가 안 좋네요. 다시 풀어보죠.
화이팅하세요!
답 20인가요.. (자신감이..)
정답입니다!
미리 풀이 올려봅니다. 저는 점화식을 이용해서 풀었습니다. X의 원소의 개수를 n이라 할 때 f,g의 개수를 각각 a_n,b_n이라 하자.(n은 자연수) a_2=2, b_3=4임은 쉽게 알 수 있다. 또한 a_(n+2)=\binom{(n+2)}{2}*a_2*(n!-a_n), b_(n+3)=\binom{(n+3)}{3}*b_3*(n!-b_n)임도 쉽게 알 수 있다. 따라서 이를 통해 계산해보면 a_6=180, b_6=160이고, 구하는 값은 180-160=20이다. 주어진 점화식을 이용하면 a_1,a_2,b_1,b_2,b_3의 값만 계산하면 일반적으로 n에 대해 식을 찾을 수 있겠습니다만, 계산은 귀찮네요.
점화식으로 일반화까지 하시다니 멋지십니다! 근데 주어진 X의 원소 개수가 적어서 간단한 계산으로도 풀수 있습니다 ㅎㅎ
제가 경우의 수가 좀 이상하게 관심이 없는 분야라서 잘 못합니다 ㅋㅋ, 그래도 재밌게 풀어봤습니다. 감사합니다.
2026 수능D - 347
물2, 생2 만점자 과외
강민찬
현역 수능 언매선택 95점의 가성비 국어과외
물리 화학 과외
고려대 경영 졸업생, 수능 및 내신 과외합니다
수학전문과외 친절한예진쌤입니다!
답 0 맞나요?
가짓수는 각각 720, 720.
다르게 나오는 것 같아요!
답 240인가요.
좀 작습니다...
아 ㅋㅋ. 어디서 이상한지 알 것 같네요, 오늘 상태가 안 좋네요. 다시 풀어보죠.
화이팅하세요!
답 20인가요.. (자신감이..)
정답입니다!
미리 풀이 올려봅니다. 저는 점화식을 이용해서 풀었습니다.
X의 원소의 개수를 n이라 할 때 f,g의 개수를 각각 a_n,b_n이라 하자.(n은 자연수)
a_2=2, b_3=4임은 쉽게 알 수 있다.
또한 a_(n+2)=\binom{(n+2)}{2}*a_2*(n!-a_n),
b_(n+3)=\binom{(n+3)}{3}*b_3*(n!-b_n)임도 쉽게 알 수 있다.
따라서 이를 통해 계산해보면 a_6=180, b_6=160이고, 구하는 값은 180-160=20이다.
주어진 점화식을 이용하면 a_1,a_2,b_1,b_2,b_3의 값만 계산하면 일반적으로 n에 대해 식을 찾을 수 있겠습니다만, 계산은 귀찮네요.
점화식으로 일반화까지 하시다니 멋지십니다! 근데 주어진 X의 원소 개수가 적어서 간단한 계산으로도 풀수 있습니다 ㅎㅎ
제가 경우의 수가 좀 이상하게 관심이 없는 분야라서 잘 못합니다 ㅋㅋ, 그래도 재밌게 풀어봤습니다. 감사합니다.