f(x+y)=3f(x)f(y)
게시글 주소: https://iu.orbi.kr/00069140426
수2 첫 개념공부 하는 중입니다.
f(x+y)=3f(x)f(y)이고, f'(0)=2 일때 f'(2022)/f(2022)의 값을 구하는 문제인데,
여기서 f(x+y)=3f(x)f(y)를 미분하면 f'(x+y)=3f'(x)f'(y)+3f(x)f'(y)라고 생각해서 풀었는데
이 식이 틀린 것 같더라구요.. 곱의 미분법을 사용해서 이런 식이 나왔는데 왜 틀렸는지 이유가 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일단 3월부터 수능날까지 매일 3-4시간 투자할거고 3월말부터개념,기출 들이박고...
-
모르겠어요
-
본인은 장수면서 재수인 나보다도 이번 수능을 못 봤던데 그럼 본인은 좆같이도 노력을 안 한 건가?
-
기하러 논술 6
한양대 중앙대 세종대 남았는데 미적 안한 기하러 붙을 확률 많이 낫나..? 확통은...
-
미적분 선택했고 6월 3등급 9월 3등급 이번 수능 가채점 기준 1컷 나왔습니다....
-
큐브로 쌀먹중인데 11
밥먹고 하루종일 돌렷는데 2만원밖에 안벌렷네… 걍 과외하거나 편의점알바가 더 효율적인듯
-
난 대체 무엇을 하고 있는건인가....
-
미적 할 거 ㅈㄴ 많다면서 걍 관성 따라 미적하는게 이해가 안된다면서 기하를...
-
ㅈㄱㄴ
-
그래도 다들 어디서 본 사람들임 ㅋㅋㅋㅋㅋ
-
어그로 죄송합니다 혹시 n수분들 작년에 텔그 가채점에서 보통 몇퍼 떨어졌나요?...
-
모교 연애썰 9
여고에 그런 게 있겠냐? 난 있을 줄 알았는데 역시나 없더라
-
뒷북인가요?
-
진짜죽고싶었음
-
하나는 답은 맞았는데 해설이랑 다르고 하나는 그냥 건드리질 못하겠어요 허수라는 걸 체감함뇨..
-
그시간에 검토하는게 개이득같은데 어떻게 생각함
우리가 평소 하는 미분이 x에 대한 미분(d/dx)이라서 그렇죠 y를 y(x)처럼 x에 대한 함수로 생각하면 그렇게 미분할 수 없음을 알 수 있습니다
f(x+y)는 f'(x+y)로 미분할 수 없는 함수에요! 고등학교 미분에서는 무조건 '변수가 하나일 때'만 미분 가능한데, 여기서는 x랑 y가 모두 변할 수 있는 값이라 미분하면 큰일납니다! 해설지 보셨겠지만 미분계수의 정의 형태로 만들어서 푸는 게 올바른 풀이에요:)
y에 0 대입하고 x에 대해 미분해봐요
x와 y 모두 변수라 x와 y중에 하나는 상수로 두고 미분하는게 쉬웠어요