f(|x|)=x^3
게시글 주소: https://iu.orbi.kr/00069002425
이 식은 항등식, 그래프도 될 수 없죠?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
차갑고추움 집임
-
슬슬 낼만한듯
-
오늘 수열 틀려서 너무 빡인데 나수2를젤잘한단말이야 차라리수1넣을꺼면삼각함수넣고정답률1퍼나찍어보자
-
안녕하세요! 11월 6일 입니다. 다들 수능 잘 준비하고 계실거라 믿어요!!! 정말...
-
지구 시발련아
-
현대소설이랑 독서중에 연계 중요도 어느게 더 높음?? 3
지금 ebs 연계 벼락치기중인데 나머지는 다 했는데 이거 두개는 아직 안해서 둘다...
-
옆반 가서 티비로 보는건가여
-
군수생 달린다 7
할 수 있다 감사합니다
-
두각 내일 결제문다 온다고 안내받았는데 대기로 갈시? 0
결제 안하고 대기로 가는건가?
-
객ㄱ관식도 찍맞 2찍맞100점
-
적분식을 미분할때 인테그랄 안에 있는거를 꼭 풀어 쓴 담에 x를...
-
그런 사람 있나 9
엄청 친한 사이는 아니고 가끔 마주치면 짧게 얘기정도 하는 공부잘하는 고등학교...
-
이거 구분 확실히 하려면 사회보험 사례 외워놔야하나요
-
수능 안 봄 봐도 뭐 중요한건 아님 근데 종강도 했겠다 오르비 들어가서 애들 라인...
-
콱씨
-
나 88인데 시불
-
미 대선 13
미카공주님 당선
-
9모 84 6모 3등급 떳는데게 실모 풀고았는데 이게 맞는지 모르겠어요 실모 다...
-
올해 비문학 사회지문은 무조건 법 or 경제인가요? 8
작수처럼 경1마식 보도 이런 사회주제 내줄 가능세계는 없는 거임?
-
좋은진 모르겠지만 내가 미국인이었으면 뒤도 안돌아보고 트럼프 뽑았을듯
-
손에 안잡혀요 ㅜㅜㅠ
-
제 주식 살려줘서 감사합니다
-
https://orbi.kr/00068861136/%EC%88%98%EB%8A%A5-...
-
고전소설 - 그냥 노잼임… 어떻게든 하고있긴 함 과학기술 지문 - 문과인간이라 약한...
-
실모만 풀면 그걸 찍는게 신기함
-
솔직히 해리스한테는 밀리지 않을까 싶었는데 어떤 점이 주요하게 작용했으려나
-
1컷이 그렇게 내려갈 난이도였나? 독서는 에이어빼곤 다 쉬웠고 문학도 그렇게...
-
그런 건 없어...
-
수험생들끼리 공부 관련 질받하는거 권위 있는 수험생?(스카이에서 반수한다던가 그...
-
"춘매전"
-
저녁 ㅇㅈ 12
치킨 먹어야징
-
미친개념vs뉴런 0
내용은 같은 거 맞음????
-
수능 직전 팁 8
1. 인터넷 같은 곳에 떠도는 "이것만 해라" "이걸 봐라" 이런 글들은 대부분...
-
현대시 궁예해봄 1
"오렌지"
-
진짜 너무 쉬고싶은데 수능 얼마 안남아서 그거 하나로 죽어라 버티네요 다들...
-
작수나 올해 6,9월때 체감 되셧나요? 수특수완 보긴 햇는데 엄청 오래돼서 지금은...
-
사설 50~80 진동 개 허수가 느끼는 국어 사설이 기출과 다른 점 기출은 해설지...
-
편입 vs 수능 0
중앙대 경영이 목표면 뭐가 더 쉬우려나 편입은 학년 이어지는게 꿀인데
-
옛날에 미미미누 나오셨던 정진짜 국어 이사람 EBS 적중률 믿을만함? 이감중요도로...
-
국어로 치환하면 한문제에 6점은 너무 심한게 아닌가 싶어요
-
내장 국밥도 맛있네 13
우후후
-
이좆같은입시판을올해떠나는데실패하겠구나 군대갔다와서좆소취업해야하나
-
허수의 실수도전기 11
허수에서 실수도전기… 오늘부터 진짜 열심히 할거야
-
삼성전자 현직 질문받아봅니당 100
진로 취업 회사생황 학교생활 등등 다 괜찮습니다 ㅎㅎ
-
고2 말에 친구들이랑 점심시간에 김현우 주간지 박종민 주간지 드릴 책 바꿔놓고...
-
그저 광장 원툴 학교
-
??: 몰라 아직은 모르는거야..엉엉엉
-
오늘의 실모 6
만족스럽다 딱 커리어평균정도 나와준듯 김승모3회, 지인선 신성규 KK, 특모파2...
fx가 다항함수가 아닐 수도 있지
x=1,-1대입시 좌변은 f(1)인데 우변은 1,-1이 나오는데?
fx = (x>0) x^3
(x<0) -x^3
구간 별로 정의된 함수
X>0 일때만 정의되거나
X<=0일때만 정의됨
등호는 어디에 붙여도 ㄱㅊ
굿굿 좋은 밤!!
정의역 제한이 없으면 왼쪽은 우함수인데 오른쪽은 기함수라서 성립할 수가 없는 식이죠
그쵸 이 경우 포함해서, 함수 성질 파악시 미지의 함수식 k(x)=~~로
대칭성, 주기성 파악해도 오류없죠?
네 항등식이라고 가정하면 양변의 식이 완전히 동일한 상태니까 새로운 함수를 잡아서 성질을 동시에 만족하는지 안 하는지 확인하면 돼여
넵 감사합니다 좋은 밤 보내세요!!