와진짜이풀이가맞나
게시글 주소: https://iu.orbi.kr/00069001339
몇십분동안 고민해서 겨우겨우 낸 답은 맞았지만
풀이가 다르다
내 풀이에 오류가 있는 것 같다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 생일이야… 옯붕이들아 축하해줘…
-
비둘기가 겁이 없네 10
내 발 바로 옆에 있음
-
최저7도 최고16도 엄청 춥진않아서다행인듯
-
그야 내년이니까 ㅅ@발아
-
전 이런 찬공기냄새가 너무 좋아요
-
9일 남았군. 7
홧팅
-
일어날때 고양이가 얼굴 부비대면서 똥꼬내밀고 아침인사해줌
-
이렇게 생겨서 한번에 마킹되게 하는거거든요. 이거 쓸수 있나요?
-
남은 기간에 ebs 지엽파트 한번 공부해볼까하는데 혹시 어떻게 지엽파트...
-
수액~ 4
ㅋㅋ
-
머이리추움 4
개같은거
-
오늘하루도화잍잉 4
곧끝난다
-
국어 실모 시간 3
꼭 8시40-10시에만 푸시나요 아니면 오후에도 시간 80분 재거 푸시나요??
-
컨디션 최상이다 오늘도화이팅
-
구라같은데 ☆
-
헤헤
몬데
억지로 푼 것 같아서 불안하네요
잠깡만여 글씨가작아서 보는데좀 걸림
사실 2번 케이스에서 (1,4+a)가 존재하지 않을 “수도” 이부분은 사실 문제가 있긴 해요.
Q. 그럼 문제를 처음 풀 때 어떤 생각을 했어야 하나요?
g(x)의 연속 조건에 주목했어야 해요. g(x)가 f(x)!=0 일 때 분수꼴 함수로 나타나죠. 그러면 분수꼴 함수에서 분자, 분모는 각각 연속함수이기 때문에 불연속이 될 수 있는 의심 지점은 분모=0일 때에요
그러면 g:연속이라는 조건에서 f(x)에 관한 조건을 어떻게 뽑아내야 할까요
일단 f(0)=0인 거는 잘 찾으셨고 0은 중근이 아니라는 것도 아실 수 있었겠죠 근데 여기서 하나를 더 찾아갔어야 했어요
삼차함수의 실근 하나가 밝혀졌기 때문에 0을 제외한 실근이 최대 2개 존재할 수 있어요 f(x)=xp(x)정도로 둬봅시다 (p(x)는 최고차항계수가 1인 이차함수)
1) p(x)의 서로 다른 실근이 2개인 경우
p(x)의 인수 중 하나가 (x+3)이더라도 무조건 분모=0이 되는 x가 존재하므로 모순.
2) p(x)가 중근을 가질 경우
최대한 분모가 0인 지점이 없도록 맞춰준다고 해도 p(x)=(x+3)^2 이고 x=-3일 때 발산, g(x)는 불연속이 됩니다
따라서 p(x)는 실근을 갖지 않아요
상수항은 질문자님도 이미 찾으셨으니 판별식 이용해서 p(x)의 일차항 계수의 범위를 구해주시면 되겠어요
저는 아마 보자마자 p(x)는 실근을 갖지 않는다고 생각했을 거에요
경험 더 쌓으시다 보면 바로바로 보일 거에요
참고로 답이 되는 삼차함수가 2번 케이스처럼 생겼는데 실근이 1개만 생길 수도 있어요
저렇게 판단하는 건 틀렸다고 봐야겠어요
얘는 해설입니다