a<c<x, x->a+ 이면, c->a+ 라는 명제
게시글 주소: https://iu.orbi.kr/00068883163
다음 논의가 틀린 이유는 무엇일까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
혼자는 외로운걸.
-
내년수능은 13
무조건 언매에서 화작 미적에서 확통 과탐에서 사탐으로 싹다 튜닝하고 시험본다...
-
ㅈㄱㄴ
-
오늘부로 수능점수 발표까지 D-17 제발 2컷이 38되서 최초합하게 해주십시오...
-
거짓말도 지쳤음 3
이제 컨셉 안잡음
-
슬슬 퇴물이 되어가는
-
다들 사라졌어
-
강대 모고중에 헬난이도인 쉑기들보다 어려웟음..?
-
다이어트 1
수능 끝나고 다이어트 엄청하기는 하나봐요 아는 친구도 작년 수능끝나고 4개월동안...
-
12월~1월에 한완수 기하랑 공통 실전개념편하고 2월에 한완수 미적 교과개념하고...
-
대체 얼마나 어려웠던거야
-
뭔가 씁쓸하네 슬슬 나도..
-
후회됨뇨
-
진학사로 보면 눈물나옴
-
한완수 실전개념 할거면 굳이 뉴런 필요없는건가
-
새들이 운다 4
Birds are crying
-
ㅇㅈ함뇨 4
어떰뇨
-
근데 ㅂㅂ봇치 5
이분은 왜 탈릅하심?
-
아는누나가 심심할때마다 저나하구 아까 카톡 ㅇㅈ했지만.. 그누나가 아는오빠했다고...
-
메가스터디 재종 서초,강북,노량진,신촌 중에 어디가 제일 좋나요?차이가 별로...
-
자야되거든
-
계속 저체중임
-
봐주샘뇨
-
제목 그대로
-
쌍윤 강사 추천 0
임정환밖에 모르는데 강사 추천해줄 사람
-
오늘의 기도 2
영어2점만올라서1등급되게해주세요 다른과목가채점그대로나오게해주세요 제발 대학 가게해주세요
-
연대 전전나오면 10
어디쪽으로 취업하나요 컴퓨터보다 전망 괜찮나요
-
하나는 답은 맞았는데 해설이랑 다르고 하나는 그냥 건드리질 못하겠어요 허수라는 걸 체감함뇨..
-
아무도 내말 안믿음뇨..
-
최저는 무조건 맞췄는데 예비 몇번일지 너무 궁금하네 작년 50%보다 높아서...
-
좀 알려주세요ㅠㅠ 개념은 이미 알고, 리본으로 실전개념도 하긴 했는데 까먹은 것...
-
ㅅㅂ 욕엄청먹넹 5
ㅠㅠ
-
자니...? 1
오랜만이야
-
다만들면 무료로 뿌릴테니 나중에 한번 풀어보세요
-
알바하고싶은데 2
최저받고 홀서빙하는거아니면 할게없네.. 학원보조같은건 죄다 대학 재학생, 휴학생만 뽑는대 ㅜㅜ..
-
진짜임뇨
-
ㅈㄱㄴ
-
저거 진학사 기준이긴한데....공주교대는 안될것같지만 고대세종이랑 연대미래 될까요?...
-
집 가기
-
걍 쳐잔다 아니 아까 집 올때 같이 사올걸 ㅅㅂㅅㅂㅅㅂ
-
내년에 사탐할건데 경제 ㄱㅊ나..?이번에 물1 2컷일듯
-
이쁜남자는 개좋긴해
-
친한 컨설턴트가 무조건 45래 얘는 무슨 근거로 45라고 확신하지?
-
갑자기 수시가 붙으면 이미 결제한 진학사는 어떡하나 생각이 드는데 이거 환블 안되죠
-
회사생활 절대 싫으면 맞는 말인 거죠? 돈보다 워라벨인 전제 하에 저도 동의하는데...
-
경희대 학종 네오르네상스 조기발표 안하나요?
-
지금부터 해야함
-
피램 2026 1
내년 국어 피램커리탈건데 혹시 2026버전 언제쯤 나오는지 아시나요? 12월...
-
수능안본분탕…
클로드 ai에 물어봤는데 x->a+ 이면 c->a+ 인 것은 맞고,
lim(x->a+)f'(c) 일 때 c는 x에 종속된 변수이지만 lim(c->a+)f'(c)에서 c는 독립변수라서
수렴할 때 c의 움직임이 종속돼있을 땐 경로가 제한적이지만 독립적일 땐 아니고,
f'이 불연속인 경우에 특히 이런 불일치가 부각돼 보일 수 있다네요.
위에서 3번째 줄에 문제가 있었네요.
가장 오른쪽 극한(c->a+)이 이 존재한다면 오른쪽에서 두번째 극한(x->a+)이 존재하는 것은 맞지만, 역은 성립하지 않네요. 이는 윗분이 말씀하신 c가 독립 변수인지 종속 변수인지와 유사한 논의이군요.(가장 오른쪽 극한은 c가 독립변수, 오른쪽에서 두번째 극한은 c가 x에 종속된 변수)
극한의 정의(엄밀한 엡실론 델타)를 생각해보면 델타 구간 내의 모든 x의 함수값이 엡실론 구간 내에 있어야 합니다. 오른쪽에서 두번째 극한(x->a+)이 존재하면, 델타 구간 내의 적당한(어떤) c가 존재하여 그 c의 함수값이 엡실론 구간에 있다는 것이고, 이는 극한의 정의에 부합하지 않습니다. (모든이 아니라 어떤 이니까요.)
오른쪽 극한이 존재한다면, 델타 구간 내의 모든 c의 함수값이 엡실론 구간에 있다는 것이므로, 오른쪽에서 두번째 극한도 같은 값으로 존재한다는 것을 알 수 있습니다.(델타 구간 내의 모든 c에 대해 성립한다면, 어떤(일부분의) c에 대해서는 자명히 성립하기 때문입니다.)
정리하자면, 모든과 어떤의 차이라고 할 수 있겠네요.