수2 자작문제
게시글 주소: https://iu.orbi.kr/00068316741
마지막에서 함수 좁히기 실패.. 어떤가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현재까지 전국 #기출해설 자랑대회 참가자가 15명에 불과해 경품 수령 확률이 매우...
게시글 주소: https://iu.orbi.kr/00068316741
마지막에서 함수 좁히기 실패.. 어떤가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
현재까지 전국 #기출해설 자랑대회 참가자가 15명에 불과해 경품 수령 확률이 매우...
묘하네요
오..어떤 점이요?
12?
정답!
f(x) n차, 최고차항 계수 a
(n은 자연수, a는 0이 아닌 정수)
조건 (가) ↓
f(x^k) : nk차, 최고차항 계수 a
f(x)^k : nk차, 최고차항 계수 a^k
x^k f(x) : n+k차, 최고차항 계수 a
f(k - 1) = 1 / a^k (nk > n + k)
f(k - 1) = 0 (nk = n + k)
f(k - 1) = (발산) (nk < n + k)
조건 (나) ↓
1 - f(x)/x ≤ 0
f(x) ≤ x (x ≤ 0)
f(x) = x (x = 0)
f(x) ≥ x (x ≥ 0)
lim(x→∞) xf'(x)/f(x) = n (f(x)의 차수)
i) nk = n + k
f(k - 1) = 0, k = 1
n ≠ n + 1 이므로 X
ii) nk > n + k
n(k - 1) > k, n > k/(k - 1) > 1이고
(나)에 의해 n은 3 이상의 홀수, a는 양수
f(k - 1) = 1 / a^k ≥ k - 1
---> k = 2, a = 1
f(1) = 1이므로 f'(1) = 1
i), ii)에 의해 m₁ = 3,
f(x) = x(x - 1)² + x
m₂ = f(2) = 4
∴ m₁ × m₂ = 12