수용적 사고력 - 비판적 사고력 - 창의적 사고력 (ft. 22수능 헤겔의 변증법)
게시글 주소: https://iu.orbi.kr/00067940011
2022학년도 수능 국어 첫 번째 독서 (독서론 제외) 지문입니다.
현장에서 응시했던 첫 수능에서의 첫 시험지,
그 중에서도 첫 번째 독서 지문이었기도 하고
제게는 개인적으로 많이 어려웠던 지문인지라
대학에 온 후에도 종종 반복해서 읽어보곤 하는데
문득 [정립-반정립-종합]의 구조를 적용했을 때
우리가 무엇을 이해하는 데에 큰 도움이 되는
상황들이 몇 가지 떠올라서 글로 남겨두고자 합니다.
1. 수용적 사고력 - 비판적 사고력 - 창의적 사고력
주어진 지문에 따르면 [정립-반정립-종합]은 변증법의 논리적 구조를
일컫는 말로, 변증법은 대립적인 두 범주가 조화로운 통일을 이루어 가는
수렴적 향상성을 구조적 특징으로 지닌다고 합니다.
따라서 우리가 [A-B-C] 구조를 변증법의 논리적 구조로 이해하기 위해서는
A와 B는 대립적이어야 하고 C는 A와 B가 조화로운 통일을 이루어 가는
과정과 그 결과를 담고 있어야 하지 않을까 생각해볼 수 있습니다.
저는 사고력을 크게 세 가지로 나누어 바라보곤 합니다.
이제는 기억이 잘 나지 않는 어떠한 연구 결과를 참고한 것인데,
수용적 사고력, 비판적 사고력, 창의적 사고력,
이렇게 세 가지입니다.
저는 각각을 다음과 같이 정의합니다.
수용적 사고력: 어떠한 대상이 주어졌을 때, 있는 그대로 받아들이는 능력
비판적 사고력: 어떠한 대상이 주어졌을 때, 대상을 의심해보는 능력
창의적 사고력: 어떠한 대상이 주어졌을 때, 그것에 의미를 부여하는 능력
예를 들어 피타고라스의 정리라는 대상이 주어진 상황을 가정해봅시다.
어느 직각 삼각형의 세 변의 길이가 각각 a, b, c (a+b>c) 이며
c가 빗변의 길이라고 합시다.
수용적 사고력의 관점에서 우리는 이 대상을 바라보았을 때
"어느 직각 삼각형에서 빗변이 아닌 두 변의 길이의 제곱을 더하면
빗변의 길이의 제곱이 되는군"과 같은 생각을 해볼 수 있습니다.
그리고 그것을 머릿속에 잘 집어넣어두었다가
세 변의 길이 중 두 변의 길이만을 알고 있는 직각 삼각형,
혹은 직각 삼각형으로 근사적으로 바라볼 수 있는 도형을
만났을 때 다른 한 변의 길이도 구해낼 수 있을 것입니다.
비판적 사고력의 관점에서 우리는 이 대상을 바라보았을 때
"왜 주어진 공식이 성립한다고 이야기할 수 있는 것이지?
모든 직각 삼각형에 대해 저 공식이 성립할 것이라고
어떻게 단정지을 수 있을까? 이 정리는 피타고라스라는
인물에 의해 만들어진 것은 맞을까? 왜 피타고라스의 정리는
피타고라스의 정리라고 불리는 것일까?"와 같은 생각을
해볼 수 있습니다. 대상에 관해 '확실한가', '증거가 있는가',
'만든 이가 누구인가', '주장하는 이가 누구인가',
'이를 통해 이익을 보는 것은 누구인가'와 같은 의문을
하나씩 던져보는 것은 대상에 대한 우리의 이해도를
높이는 데에 분명 도움이 될 수 있고
때로 그 중에 몇 가지가 큰 의미를 지니어
사회 전체의 통념을 바꾸어버리거나
새로운 무엇인가를 만들어내는 데에
도움이 될 수 있을 것입니다.
이 경우에는 피타고라스의 정리를 증명할 수 있는
여러 가지 방법에 대해 찾아보며 유도 과정을 배울 수 있을 것이고
때로 새로운 방식의 증명 과정을 찾아볼 수도 있을 것입니다.
창의적 사고력의 관점에서 우리는 이 대상을 바라보았을 때
"어쩌다가 저 공식이 발견된 것일까?
피타고라스의 정리에 얽힌 이야기에는
어떠한 것들이 있을까?
피타고라스가 사람의 이름이라면
피타고라스라는 인물은 어떤 삶을 살았을까?
직각 삼각형에서 우리가 발견할 수 있는
가장 유의미한 수학적 대상은 피타고라스의 정리인가?
그렇다면 피타고라스의 정리가 직각 삼각형의
세 변의 길이 사이의 관계를 기술해주는 것 외에
우리의 삶, 일상에는 어떠한 의미를 지닐 수 있을까?
오늘 내가 보낸 나의 삶과, 어제의 내가 보낸 어제의 삶,
그 너머 어딘가에 피타고라스의 정리가 지닐 수 있는 의미에는
어떠한 것들이 있을 수 있을까?"와 같은 생각을 해볼 수 있을 것입니다.
이를 통해 제 학습 과정을 설명해보자면
1) 어떠한 학습할 수 있는 대상을 만나
2) 있는 그대로 바라보아보고
3) 해볼 수 있는 의심들을 던져본 후
4) 나만의 의미를 부여해보는 것으로
말씀드릴 수 있겠습니다.
저는 의미 부여를 참 좋아하는데,
어떠한 대상이든 조금 더 우리에게 친숙하게,
더 깊이 들여다볼 수 있도록 우리를
이끌어주는 힘을 지니고 있다고 생각하기 때문입니다.
마찬가지 방식에서 이 글에 드러난 제 생각도
있는 그대로, 의심, 의미 부여의 과정을 따라
살펴보신다면 비록 제 개인적인 생각을
주관적으로 드러낸 것이지만
수능 학습은 물론 삶에 있어 몇 가지들을
챙겨가실 수 있지 않을까 조심스레 생각해봅니다.
앞서 비판적 사고력의 관점에 대한 이야기를 할 때
피타고라스의 정리라는 대상에 대한 의문을 하나씩 던져보며
다양한 증명 과정을 배울 수 있을 것이라 언급했습니다.
이 증명 과정을 '배우는' 과정 자체에서는 수용적 사고력이
큰 힘이 될 것입니다. 물론 하나 하나 따져보며 '이게 왜 된다고
확신할 수 있지?'와 같은 질문을 스스로에게 던져보는 것이
효과적인 학습에 도움이 될 수 있을 것이지만
무한한 의심은 결국 그 어떠한 것도 우리에게 가져다줄 수 없으며
가끔은 의심이 이어져 그 화살표의 끝이 나를 가리킬 수도 있지 않을까
조심스레 생각해봅니다. 나의 존재에 대한 의심은 실존에 관한 고민으로,
실존에 관한 고민은 따로 허무와 우울로 우리를 인도할 수도 있을 것이라
저는 생각합니다. 사람에 따라 생각이 다를테지만 누군가에게 그 경험은
삶의 의미에 대해 생각해볼 기회를 제공해줌과 동시에
새로운 삶의 시작에 대한 명분을 쌓아줄지도 모르겠습니다.
헤겔에 따르면 미학은 철저히 변증법적으로 구성된 체계 안에서 다루어지는데
미학의 대상인 예술은 동일한 내용의 절대적 진리,
'이념'을 인식하는 인간 정신의 영역의 한 형태를 종교, 철학과 함께 지닌다.
예술, 종교, 철학이 각각 직관, 표상, 사유라는 인식 형식으로 구분될 때
'직관'은 주어진 물질적 대상을 감각적으로 지각하는 지성이고,
'표상'은 물질적 대상의 유무와 무관하게 내면에서 심상을 떠올리는 지성이며,
'사유'는 대상을 개념을 통해 파악하는 순수한 논리적 지성이다.
직관의 외면성과 표상의 내면성은 사유에서 종합되고,
이에 맞춰 예술의 객관성과 종교의 주관성은 철학에서 종합된다. (중략)
예술은 초보 단계의, 종교는 성장 단계의, 철학은 완숙 단계의 절대정신이다.
이에 따라 [예술-종교-철학] 순의 진행에서 명실상부한 절대정신은
최고의 지성에 의거하는 것, 즉 철학뿐이며,
예술이 절대정신으로 기능할 수 있는 것은
인류의 보편적 지성이 미발달된 머나먼 과거로 한정된다.
p.s. 고등학교 3학년 때의 저, 그리고 대학교 1학년 (대학을
두 번 다니어 1학년을 두 번 경험했습니다만) 때의 저는
그 누구보다 절실히 교육의 힘을 믿고자 했던 것 같습니다.
나를 변화시킬 수 있는 도구 중 하나가 교육이라 믿었고
그 믿음 아래에 열심히 공부하고 열심히 가르치고자
마음 먹었던 것 같습니다.
요새는 생각이 조금 바뀌어갑니다.
때로는 교육으로 해결되지 않는 것들이 있으며
아무리 가르쳐도 절대 따라하지 못하는 것들이 있음을
부정하기 어려운 상태로 스며들어가는 듯합니다.
비록 어느 고등학교의 내신이, 1차 지필 시험지가
완벽하다 말할 수 없고 한국교육과정평가원에서 출제될
2025학년도 대학수학능력시험 시험지가 완벽하다 말하기
어려울 수도 있을테지만,
수험생 분들께서는 오늘 하루도 잘 마무리 하시어
내일을 위해 나아갈 수 있으셨으면 좋겠습니다.
이 글을 접하신 모든 수험생 분들의 내일을 응원합니다.
읽어주셔서 감사드립니다, 내일 하루도 파이팅입니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
메가는 된다고 하는데 다들 안될거라는 분위기네
-
실수 한문항 했던거같은데 그게 너무 걸린다. 최저도 까다로운편이고 경쟁률도...
-
애니안보는이유 6
인싸청춘라잎 보면 자!살말릴거같아서
-
과는 사회과학계열입니다... 메가 예측에서 안정으로 뜨긴 합니다.
-
아빠가 이상한 기사 보고 와서 계속 영어 1등급 7~8% 나온다는데 4
메가 비율 보여주면서 똑같은 얘길 5번째 해주고 있네 ㅈㄴ답답하다 뭔 사기꾼 기사를 보고 온 거야
-
[고려대합격자를 위한 꿀팁][사전공지]_수능 끝나고 입학 전까지 하면 좋을 것들 [학업 편] 0
안녕하세요. 고대에 처음 발을 딛는 우리 '아기호랑이들'을 위해, 2024년...
-
1. 자연과 윤리 위 - 9모 아래 - 수능 ㄹ선지 연계 2. 사회와 윤리 위 -...
-
전 유명해져야하는데 17
그래서 이쁜말만 하는중
-
높은편임? 왱케 많이왓지 우리 반에 22명잇던데
-
문제 똑같음? 뽑는건 따로 뽑지않나
-
두근두근
-
미적 3-2는 못풀어서 다른것들만 올려봅니다 +) 친구가 답 다르다길래 집 가는...
-
12월 말 개강전에 대기 풀림??
-
사탐런 저격으로 생윤 ㅈㄴ 괴랄해졌는데 평가원에서 그것도 수능에서 한 번 어려우면...
-
나머지 문제 빼고 다 풀었고 나머지 문제도 답은 냈는데 전 좀 쉬웠던 거 같았는데 다들 어떠셨나요?
-
문제당 배점이 30 30 40인 게 매년 다르던데 이번 40은 몇 번이라고...
-
0.01 페이커급 갈리오 플레이함! 파이크 그랩도 페이커가 아리 매혹 피하듯이 피함!
-
교수가 내 풀이를 봐준다고 생각하면서 적으니까 막 흥분됨ㅎㅎ 풀면서 ㅈㄴ교수 너의...
-
유명해지면 안되겠다 11
한 말이 많아가지고
-
사탐런 3
3,5,6,7,9,10, 수능 순서대로 생명 42 47 47 42 42 50 42...
-
생윤 42가 표점이 높네 그럼됐다 ~
-
확실히 실버는 듀오 없으면 탈출 못 하겠다 진짜 에지간히 못하네
-
사탐런과목추천좀 4
사문 정법 세지 한지 중에서 두개요
-
2025 반복되는건 기분탓인가
-
25이하라는 조건이 따로 있었음? 다들 1,3,5,9,15 나왔다길래 난...
-
기하 3-2번답 최대최소 9랑 1맞나요???? 기하처음봣는데 거기 공식으로 어떻게...
-
임신존나시키기 9
왜들러옴
-
어루버기 10
-
중앙대 오전논술 3
소프트웨어 학부면 컷 몇점정도 될까요 ㅠㅠ 3-2 못풀어서 15점 날리고 3-1...
-
약대 가려면 0
지금까지 생1지1이 안정적인 1등급이 안 나왔는데 약대 가려면 그냥 사탐 두과목으로...
-
만년 2,3등급 친구가 (올해 초에 수학 공부 시작하긴함) 다 풀었다는데
-
예비재수생인디
-
어땠음? 합격컷 높으려나
-
부교에서 1컷 48이라는데 어케 생각하심? 세사는 응시인원도 적어서 언급 많이...
-
뭐가 있죠
-
지금 지하철 타고 가는중읻데 1시까지 입실인걸 못보고 1:30까진줄 알았는데 1시...
-
한양 상경 0
한양 상경 인문은 ㄱㅊ고 수리 1,3 맞추고 2번 풀이 다 쓰고 정답까지 냈는데...
-
예전 글인데 다시 퍼올립니다 읽고 가슴에 무언가 와닿았으면 합니다 꿈꾸는 공대생...
-
텔그에서 카관의 0
지금 몇점대에요??
-
한양상경논 4
아 2번문제 1,3,5,9 15까지 구했는데... 코사인 법칙으로 푸는것이라고...
-
어땠음 계산 개많던데
-
다들 생각이 너무 깊어
-
외대 떨어질 것 같지만 10
(가) 참정권 - 여성 '제외' (나) 수은 - '포괄 정책' (다) 추상화 -...
-
텔그에 초록불 들어왔다... 제발 탐구병신을 구원해다오..
-
문과 재수 5
근데 문과는 재수하면 어디서 함? 기숙이나 재종가면 탐구는 어차피 인강으로 대체...
-
환산점수컷 0
23때가 비교적으로 수능쉬웠던거로 아는데 왜 제가 보는대학들은 대부분 22,24보다...
-
지1 -> 물2 0
이제 현역된 현 고2인데요 지금 내신으로 물1, 지1으로 하고있는데 물리는 적성에...
-
군대가야하는데 종류가 많아서 헷갈리네요 ㅠㅠ
첫번째 댓글의 주인공이 되어보세요.