학생들 95%가 잘못 아는 수학 개념
게시글 주소: https://iu.orbi.kr/00067633525
바로 ‘치환적분법‘입니다.
제가 매년 학생들을 가르치면서 느끼는 건
이 개념에 대해서 제대로 이해하고 있는 학생이 거의 없다는 겁니다.
치환적분법은 얼마든지 고난도 문제로 출제될 수 있고, 출제된 적도 많은데도 말이죠.
자기가 이번 수능에서 수학 1등급 꼭 받아야한다는 학생들은 아래 영상을 꼭 참고해보세요.
제가 서울대반, 의대반 강의할 때도 학생들이 듣고 깨닫는 게 많다고 했던 내용을 담았습니다.
<치환 적분법 핵심 오개념>
1등급들은 다 되는 메타인지 나도 기르기
1달 만에 6000명 돌파한 저의 유튜브 구독자 이벤트 중입니다!
서울대, 의대생들이 썼던 ‘공진단 체크리스트’를 무료로 나눠드리고 있습니다!
내가 공부를 잘 하고 있는지, 못하고 있는지를 자동적으로 확인하실 수 있습니다! : )
더 구체적인 내용은 아래 영상 참고해주세요 :)
0 XDK (+10)
-
10
-
2025년에 무려 천오백명을 무려 수시지역인재에 올인했다는것이
-
ㅈㄱㄴ
-
폰을 폴더폰으로 바꿨다고해서 확인을 못 할수도 있다는 거에 대하여
-
또 병원 옴요 아.
-
한 번 사는 인생 16
언제 죽을지도 모르는 거 제동장치 고장난 열차처럼 달릴까
-
친한 후배 제주대 썼는데 지원자들 중에 1,2지망 농어촌으로 홍익대 경희대 건대...
-
쀏 0
궢귛귍?귪�궻귺긏긘?깈깛
-
첫번째 유형 그냥 잘하는 타입 어렸을 때 독서를 많이 해서 어쩌구, 언어능력이...
-
증원은 이미 됐고 수시모집은 끝 정시는 원서 다 넣었고 정부 탄핵은 3월안에는...
-
개적폐전형 빨리 폐지해야하는데
-
유독 작년만 충원율 적던데 왜그런건가요? 작년이 불수능이라 그런가요? 그럼 올해는...
-
지방이 좋다구..
-
시발
-
목마른 내게 합격을 다오
-
매년 이슈가 넘쳐남
-
자기가 뭔말했는지도 기억 못하고 논리라고는 1도 없어서 반박도 못하는 사람이 대학...
-
이제 전북대생이라 불러라 이지랄ㅋㅋㅋㅋ
-
내용 열심히 준비하고 열심히 공부하고 들어갔는데, 왠걸... 완전 생소하고 처음...
-
중앙대 발표 함 2
내일
-
의대생 최소 몇백명이랑 수능보는거임?
-
ㅈㄱㄴ
-
아이 짤 투척 3
이게 미래다.
-
누가이김?
-
먼저 공격당하거나 사회 보편적으로 누가 봐도 욕먹을 짓 한 경우가 아닌 한
-
힘들까요? 경제적으로 넉넉치 않아서 독재학원만 등록하고 사설인강으로 혼자 해야 할거...
-
서울 아파트 한채 + 연 10억 지급 이거 설문 돌리면 백프로 나올테니 그럼 ㄱㄱ하는거임?
-
ㅎㅎ
-
판 돌아가는거 아직도 모르겠어요?이래도 제가 분탕 선동꾼입니까? 35
저는 분명히 다 경고드렸어요한 사람이라도 피해 덜 보길 바래서 그렇게 글...
-
국어 독학 인강 4
일단 책읽기 + 고2 국어 마더텅 돌리던게 끝나가서 이제 인강으로 할지 독학으로...
-
예비고3 학생입니다. 10모 기준 수학 4초인데 컨설팅에서 수학 문제를 풀 때 3분...
-
26 의대 모집정지 될거라 보시나요 안될거라 보시나요?
-
으하하하
-
그나저나 올해는 원서 헷갈려서 잘못 넣은 사람은 안보이네 9
작년엔 잘못써서 뭐 체교과 실기 준비하러간 사람 봤던거같은데
-
내년에도 불인증이면 25 26 망하고 내년에 인증되면 다 ㄱㅊ은거?
-
ㅋㅋㅋ
-
지방러라 모르는디 지도상으로는 다닐만 한거같은데 ㄱㅊ..?
-
존경스럽군
-
25버전 교재인데 작년강의들을까요 아님 그냥 올해강의 이거로 들을까요?
-
ㅈ주빈이랑 연관된건 아니자나...그럼 머지
-
꿈만휘 재밌는 점 12
올수 성적표 나오고 재미삼아 라인 잡아달라고 글 올렸는데 설인문 '간당간당' 하다고...
-
그들이 몰려오는 거 같네 렉카짓 해도 대화가 통하면 상관이 없는데 저능아마냥...
-
처음 알았노..
-
왜 다이어트식품인지 알겟삼 연어랑 투탑,,,
-
오르비 의뱃은 일단 따고.... 나머지는 나중에 생각하고...
-
세이버는 강한걸까 약한걸까 최애의 아이는 한국어 제목이 오히려 더 중의적으로 잘...
-
제대로 반박도 못하고 할줄 아는건 의주빈 밖에 없는거 같으면 7ㅐ추ㅋㅋ
-
수학 고민 ㅜㅜ 0
1월말~ 2월 중순까지 수학 뭘 하는게 좋을까요?? 이기간 동안에는 거의 수학만 할...
-
올해 붙은 애들 우짜냐..
-
“살아남는 자가 강한 것이다“
-
무슨 이야기를 할까 님들은 안궁금함?
확통이는 스윽...지나갑니다
본질적인 이유는 이번 기회에 제대로 알았습니다만 선생님 근데 합성함수의 미분 꼴에서 g(x)를 T같은 걸로 치환했기 때문에 합성함수 미분 꼴에서 나올 g'(x)가 T'가 되서 1이 되니 사라진다는 건 알겠는데 그렇다면 그냥 g'(x)dx=dt라고 생각해도 큰 지장은 없는 것 아닌가요? 제가 수학 34등급이라 이해를 못한걸수도 있습니다 이해 부탁드립니다
"g'(x)dx=dt라고 생각"이라고 하셨습니다만
이게 오류이기 때문에 '생각'을 안 해야 받아드릴 수 있는 거랄까요?^^;;
적분에 ∫h(x)dx에서 h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
치환적분 처음 배울 때 학생들이 많이 혼란스러워하는 부분이기도 하고
고등학교 수학 범주 내에서 계산상으로도 비효율적이어서
혼란 해소 & 계산 효율 향상을 위해 알려드린 것입니다.
또한 제 경험상
많은 학생들이 이에 대해 고민하고 헤매다가 생각을 접고 그냥 받아드리는데
그 고민하고 헤매는 시간을 없애고
공부에 집중할 수 있도록 해드리는 것이 이 영상의 목적이기도 합니다 ㅎㅎ
(학생에 따라 이걸 상당히 오래 고민 경우도 있어서요)
또한 미분 적분에서 이런 기호 사용에 대해
헷갈릴 수 있는 부분이 정리되어 있어야
dy/dx를 본격적으로 다루는 고난도 문제 풀이도 받아드리기 좋다고 생각해요.
일변수함수에서는 마치 분수처럼 연산이 가능합니다. 우연의 일치이긴하지만 치환적분의 원리만 이해했다면 계산의 편의가 있는 문항의 경우 사용해도 무방하다고 봅니다
지나가던 학생입니다 입시생도아니라 딱히 할말은없는데 dt/dx가 분수는 아닌것은 맞으나 xyz그이상의 다변수함수가 아닌이상 분수처럼 사용해도 큰문제는 없는걸로 아는데 심지어 미분방정식 첫 시작할때 저런식으로 dy/dx쪼개서 넘겨서 쓰기도하구요
애초에 저게 분수가 아닌이유도 원래 분수처럼 라이프니츠가 쓸려다가 dt같은 무한소는 존재하지않는다는게 현대에 와서 밝혀졌고 그래서 분수가 아닌걸로 결론내려진걸로알고있고
xyz이상쓰는 다변수의함수에서는 저런 dy/dx가 벡터개념으로가기때문에 분수로 사용은 불가능한걸로알고
고등학교내에서는 심지어 대학과정에서도 다변수함수가아닌이상
(이부분은 제가 몇년전에 들어서 기억이 안나네요..) 이렇게 dy dx 를 쪼개든 분수처럼 쓰든 크게 써도 상관없는이유가 연쇄법칙쪽과 관련있어서 괜찮다고 알고있는데 굳이 분수아니다 라고 굳이할필요는 없지않을까요?
고등학교에서 라운드기호쓰는 편미분을 할리도만무하구요
맞습니다. 응앵웅웅님처럼 수학 실력이 좋으셔서
분수가 아닌 것도 알고 있고
미분 상황에서 분수처럼 써도 되는 이유까지 알고 있으면
전혀 혼란스러울 것이 없을 것입니다.
그런데 현장에서 학생들을 가르치다보면
이 부분이 납득을 못해서 혼란스러워하는 학생들이 굉장히 많습니다.
d/dx f(x) (=df(x)/dx) 기호 표현에서
d/dx 와 f(x)가 곱해져 있는 것으로 생각하는 경우도 많고
또한 이번 글에서 다루는 것처럼 치환적분할 때
정확한 원리에 대한 이해 없이
g'(x)dx=dt를 이용해서 문제를 풀다보니
이것 자체보다도
∫h(x)dx와 같은 형태에서
h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
그동안 내가 적분 해왔던 건 뭐지?하며 혼란스러워하는 경우도 많이 봐왔고
혼란을 끝내기 위해
이해를 포기하고 대충 받아드리고 나니
dy/dx를 본격적으로 다루는 고난도 문제 풀이도
못 받아드리는 경우도 많이 봐왔습니다.
잘 아는 사람 입장에서는 쉬우니까 적당히 해도 좋을 것처럼 느껴지지만
(저도 대학생때까지는 그리 생각했는데 본격적으로 학생들을 가르치니 입장이 달라지더라고요)
잘 모르는 사람 입장에서는 미적분에 대한 수학적 사고 자체가 막히는 일이 발생해서
고난도 문제 다루기를 어려워하는 걸 보아 안타까운 마음에 얘기하게 되었습니다. :)
저도 chain rlue 생각해서 ㄱㅊ지 않나 싶었는데 선수를 뺐겼네여..
분수가 아닌건 알지만..고등학교 교육과정 내에선 분수로 생각해도 오류는 없다고 배우긴 했습니다