GOAT 판별 ox 문제
게시글 주소: https://iu.orbi.kr/00067568363
옆동네에 올렸는데 반응이 좋아서 여기에도 올려봅니다!
(+ 위의 네 함수의 정의역인 실수 전체의 집합입니다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
홍대 경영 0
몇번까지 돌까요..? 최근 몇년보다는 좀 덜 돌것같은데... 두바퀴는 돌라나
-
일요일 하루 3시간정도 투자 (인강) 어짜피 일요일은 복습날이라 괜찮을거라...
-
논술이슈보다 고대가 신경쓰이는쪽이 더 컸으면 좋겠다 1월 2X일 조발 기원
-
시간 여유롭게 다풀어서 이건 100점 각이다 유후 하면서 15분 검토하고 채점해보면...
-
큰냄비에 라면 5묶음 6묶음파는거 다때려넣고 계란까지넣구 끓인뒤에 살짝퍼져있는거...
-
이정도뿐이 생각이 안 나요
-
수능을 좀 못봐서 경력을 쌓아보자…
-
과탐이 다 그런 경향이 있지만.. 생명 안해봐서 궁금
-
캐슬드가자잇
-
덕코드림 12
댓글보고 아무나 무작위로 줌 자고로 얼마없음 ㅋㅋ
-
중학생 4인 강의 + 자기주도학습 지도까지 해서 주2 2시간씩 주급 15만원...
-
그냥 김과외 제안서 난사로 구하는 게 더 편할 것 같은 느낌
-
강기분 어때요 1
문학 말고 독서가 좀 약해서 듣고 싶운데 강민철 드립으로만 사실 좀 들어봤지...
-
서울댄가
-
기름은 다 못잡았는지 좀 둥둥 뜨고...물은 좀 덜 부어도 됐을거같아서 아쉽네요 ㅠ
-
서울대 리트 상위몇퍼정도한거임?
-
미적 기본개몀도 자세히 설명해주나요? 아니면 다른강의로 기본개념은 떼고가는게 낫너요?
-
아오 진짜.... 뭔 수학 21번급이야
-
스나 붙으면 반수안할듯..
-
중앙대 물리 와보셈 16
빠져줄까말까 킥킥
-
인생망하게찌 일단2학년은 끝내고 생각해보는게 맞는거겠지
-
친구가 수능 공부에 앞서 독서 지문 풀어보라고 해서 한비자 지문 도전해봤는데,...
-
17명 뽑는과인데 점공 2명안들어왔고 지금 16등에 동점자하나있는데 제가 순위...
-
내 심장의 색깔은 블랙 10
그런김에 질문받습니다
-
몇시간정도 걸려야 정상임? 한 문제 막히면 못 넘어가서 시간 ㅈㄴ 쓰는거 같은데
-
집에서 뒹굴거리면서 냉장고 털어먹고 있기 때문... 내일은 냉장고 구석탱이에 있는...
-
난 다른 것보다 친구들이 메디컬이랑 스카이 이상 가는게 제일 크게 다가왔던 것 같음...
-
바바바엣츄 3
엣쮸,츄,엣츄희,,,, 데헷 요즘 춥네여
-
무장남 안실장 완전 제미익군 그 이름 안창정. 내가 만든 줄임말로 전북의 모든...
-
ㅠㅠㅠㅠㅠ 억까하지마 오늘 충분히 당했다고
-
이번에 중간 평가한 15개 대학을 제외한 의대들은 올해 인증을 안 받나요? 동국대는 어떻게 될지ㅠㅠ
-
좀 궁금해서 ㅋㅋ
-
어떻게 생각하심? 개념 기출 실전개념은 어느정도 장착된 상태로 시작하면 진짜 ㅈㄴ...
-
고등학교 친구들 대부분이 메디컬서연고 진학해서 친구들과 비교해서 모난돌이 되기...
-
이영수 유베가는길 듣는데 구문만 신택스 하면 안되나요? 0
이영수 유베가는길 구문파트보타 신택스가 더 잘맞는거 같은데 이영수 커리 타면서...
-
국어 노베 1
제가 국어 수준이 노베이스에 가까운데 2026 수능 국어 1등급 목표로 잡고 공부를...
-
어쩌다보니 수학 가형 2번보고 통합수학 3번봄. 심지어 가형 2번 본것도 기하와벡터...
-
메가는 강의 오프라인 다운하면 수강한걸로 뜨는데 대성도 강의 다운하면 들은걸로...
-
학교생활, 공부, 캠퍼스 등 질문 환영
-
푸앙
-
이유가 뭐죠?
-
이거 예비번호 계열별이랑 학과별로 2개나옴?
-
큐브하고시퍼
-
07년생자퇴러인데 관독다니느라 운동도못하고…밥도 맨날 밖에서 먹어서 건강이 악화되는...
-
ㄹㅇ로 가능한가 싶네
-
노인분들 보고 딸피라 하는거 어렸을때 할아버지랑 오래 지내서 그런가 얼굴이 진심으로...
-
감정이 없는사람이면 모를까... 어린아이, 작은동물 등등 나보다 무조건 약한...
-
꿀잼
-
맨날 출석하는 남자들 다 키 170 미만 같은데 개열심히함;; (저도 키 작이서ㅠ맨날 출석중)
2번빼고 몰겠다
상수함수는 어디서든 극대이자 극소고
그거말고 ㅁ?ㄹ
1번 x
엑오엑오?
아닙니다ㅠ
Xoxx
아닙니다ㅠ
2번 x 상수함수는 극대이자 극소
Xxxx
갓ㄷㄷㄷㄷㄷ
Ez
xxoo?
아닙니다ㅠ
xxxx
갓ㄷㄷㄷㄷ
XXXX
머릿속으로 반례 그래프그려봄
갓ㄷㄷㄷㄷㄷ
그니까 각각 반례가
1번 y=x³같은거
2번 상수함수
3번 절댓값함수 접히는 점에서 상수함수가 접선 되는 경우
4번은 잘 모르겠음 구간별로 정의된 함수에서 뭐 나올거같은데
이거맞나요
3번 반례 틀렸습니다
3번 삼차함수 역함수
3번 수2에서 반례 있음? 숏츠에서본 삼차함수 역함수 말곤 생각이 안나여
수2를 이용한 반례는 존재하지 않을 것으로 보이는데 잘 모르겠네요 :)
4번 반례를 모르겠네...
xxox ??
아닙니다ㅠ
4번 반례가 감이 안 잡히네요...
4번 왜 x인가요? 뉴런에서 f’(a)=0인 것은 극점이거나 변곡점이다 이렇게 배운거 같은데.. ㅠ
유명한 반례 함수 하나 있습니다 :)
XXXX
1. y=x^3
2. y=0
3. 1번 반례의 역함수
4. x^2 sin(1/x)….?
갓ㄷㄷㄷㄷㄷㄷㄷ
4번 맞아요? 예전에 강기원쌤이 그려준 그래프 생각나서 말해봤는데 ㄷㄷ
와
123은 알겠는데 4번은 진짜 모르겠네요 ㄷㄷ
전부다 x임ㅋㅋ
1. 등호가 있어야 함 (수2범위 한정인듯, 확통이라 ㅈㅅ)
2. 상수 구간을 포함한 구간별 정의된 함수에서는 해당 상수 구간에서는 함숫값이 전부 극댓값이자 극솟값임
3. 이런 함수에선 접선이 있을 수 있음
4. 삼중근 갖는 사차함수만 생각해봐도 아님을 알 수 있음
3,4번 반례가 틀렸습니다.
음...그런가요...통통이라 잘 모르것음
3번: x=0에서 접선 존재 안함
4번: 삼중근인 경우에서 변곡점
아뇨 3번은 x=1일 때 불연속이도 접선 있을 수 있는 거 아님뇨?
연속함수의 경우를 물어보고 있어서 전제에 맞지 않습니다
딴건 쉬운데 4번은 잘 모르겠네요
아 연속이었구나
근데 4번은 수2 범위에서 증명 가능하나요...?
다항함수인 경우는 참이기 때문에 수2로는 불가능할 것 같습니다ㅠ
3번은 윗댓 분 말을 이해했는데....이것도 수2로는 알기 힘들까요...?
기하적으로는 이해할 수 있으나, 수식으로 보이기는 수2로 힘들 것 같습니다ㅠ
확통 선택자들은 3,4번 질문에 대해 올바른 답변을 하지 못해도 수능을 보는데 있어 별로 상관없다고 이해해도 될까요?
정말 진짜 아무런 상관도 없습니다!
심지어 4번은 미적분도 상관 없습니다ㄷㄷ
3번 절댓값x 더하기 절댓값 x-1이면 반례인가요?
반례가 될 수 없습니다ㅠ
xxx?
1. 0이상
2. 상수함수
3. 역함수
4. ?
1. f(x)=x^3이면 f'(x)=3x^2에서 방정식 f'(x)=0의 해가 존재한다. 따라서 거짓
2. f(x)=1이라면 실수 전체의 집합에서 극대이며 극소이다. 열린 구간에서 최대/최소가 되는 것이 극대/극소의 정의임에 초점을 둘 것. 따라서 거짓
3. 함수 y=x^3의 역함수를 생각해보라. x=0에서 미분 불가하지만 접선 x=0이 존재한다. 따라서 거짓
4. 미분 가능한 함수에 대해 극값을 갖는 상황은 도함수의 부호가 변동하는 상황. 그런데 극값을 갖지 않는다면 부호가 변동해선 안된다.
f'(a)=0이고 x=a에서 f'(x)의 부호 변동이 일어나지 않는 상황이므로 f'(x)>0였다면 계속 f'(x)>0이고 f'(x)<0였다면 계속 f'(x)<0.
증가하다가 접선의 기울기가 0이 되는 상황과 감소하다가 접선의 기울기가 0이 되는 상황을 설명할 수 있는 곡선의 그래프 개형은 x=a에서 변곡점을 갖는 상황이다.
4번 참이라는 뜻인가요?
그렇게 생각했는데 반례가 존재하는군요!!
맞습니다..!
위에 댓들 안보고 답함 xoxo
아닙니다ㅠ
ㅅㅠ발 다 x네 이유찾아봄
Xxx? 4번 모르겟네요 근데 나머지는 내신때 많이봄
그럴듯하다=X
이건아닌데=O
답 xxxx
갓ㄷㄷㄷㄷㄷ
1번은 등호표시가 잇어야 되는건가용? 처음에 보고 oxxx햇는데 1번 x라 하길래 ㅇㅁㅇ...
정확합니다!
xoxx
아닙니다ㅠ
XXXX
1. [반례] f(x) = x³ (전 구간에서 증가, f'(0) = 0)
2. [반례] f(x) = a (a는 상수, 전 구간에서 극대 & 극소)
3. [반례] f(x) = x^⅓ (x = 0에서 미분 불가능, 접선 x = 0 존재)
4. [반례] f(x) = -x²(x + 2)² (x < 0), x² (x ≥ 0)
(f'(0) = 0이고 [-1, ∞)에서 증가하지만 f''(0+) = 2, f''(0-) = -8)
4번 x=0에서 변곡점을 갖기 때문에 반례가 될 수 없습니다
f(x)
= -(x + 2)² (x < -2)
= 0 (-2 ≤ x < 0)
= x² (x ≥ 0)
f'(0) = 0이고 x = 0에서 극값 X
f''(0-) = 0, f''(0) = f''(0+) = 2 이므로 좌우 부호 변동 X
x=0에서 극소이므로 전제에 맞지 않습니다
변곡점의 정확한 정의가 뭔가요? 4번보고 삼중근4차함수 떠올렸는데...
제가 통통이라 정확한 변곡점의 개념을 잘 모르겠네요
오목에서 볼록 또는 볼록에서 오목으로 바뀌는 지점입니다
1.x. 반례 단조증가
2.x 반례 상수함수
3.x 반례 x=0에서 미분 불가지만 y축이 접선
4.x. 4차 함수 3중근 (이건 확실치 않네요)
4번 반례가 될 수 없습니다
계산하니 반례가 안되네요.
다함함수 범위서는 다 성립인거 같은데 초월함수 인가요?
1. 단조증가(y=x^3)인 케이스가 존재 따라서 X
2. local maximum,minimum 정의에 의해 X
3. 접선의 기울기가 무한대로 발산하는(y=x^1/3) 충분히 존재 가능하므로 X
4. 원함수가 실수 전체에서 미분가능하지만 도함수가 불연속이 될 수 있는(y=x^2sin1/x)충분히 존재 가능하므로 X
갓ㄷㄷㄷㄷㄷ
4번 반례 그냥 상수함수여도 되나요??
반례가 될 수 없습니다
상수함수가 모든 점에서 극소이자 극대라
x^2sin(1/x) 의 정의역은 x!=0인 실수여서 반례가 아니구요. 정확히는 함수를 새로 정의해야 합니다.
g(x)= x^2sin(1/x) (x!=0)
g(x)=0 (x=0)
정확합니다!
오
3번은 접선의 정의 자체를 고등학교 교육과정에서 제대로 가르치지 않기 때문에 적합한 문제같지 않네요.
3번은...N축과 수직인 접선을 출제하던가요...
어우 N축이래 X축인데 제가 돌았나봄...
4번은 반례 어케알지 현장에서.....
엑스 오 엑스 오? 맞나요
아닙니다ㅠ
1. x
f'(x)>=0
2. X
상수함수
3. x
불연속점에서 우측 좌측으로 접선 그을 수 있음
4. x
이건 반례를 모르게따..
3번 연속함수를 전제로 하고 있기 때문에 반례가 될 수 없습니다
아 그럼 기울기 무한대 or -무한대로 가는 함수밖에 없겠네요
강기원쌤 하신 말이 떠오름
xxox
아닙니다ㅠ
아 3번 이해했어요
삼중근 삼차함수 살짝 회전시키면 미분가능하지 않은데 접선 그릴수 있으니
이정도면 고튼가여? ㅋㅋ
당연하죠 :)
xxx?
xxxx
갓ㄷㄷㄷ