2016학년도 난만한+포카칩 오프라인 B형 일부 문항 해설
게시글 주소: https://iu.orbi.kr/0006731758
2016 난만한, 포카칩 수능 직전 모의평가 29,30 해설.pdf
현장 응시자였습니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
남자4 여자3 막 붙어다니면서 같이 놀고 그런건 아닌데 소소하게 산책하고 가끔...
-
ㅈㄱㄴ
-
키가 50cm면 어캄뇨 15
치와와랑 싸워도 장담 못함뇨..
-
계실까요??
-
롤 솔랭 마스터 22
자랑 맞습니다 감사합니다
-
아 배 아파 3
더부룩해
-
저격메타 좋네요 4
캬
-
무슨 경우 인가요? 수시 합격해도 죄다 다른 곳으로 가버리는 사람들이 압도적으로...
-
일단이사람한테는 정말 고맙다고말하거싶다 일면식도업는사람이 정말괴롭다고 쓴 뻘글에...
-
저랑 개그코드가 비슷하신거 같기도 하고 ㅋㅋㅋㅋ 저 격한거 아닙니다....
-
저격) 미미미누님께 모욕적 표현을 쓴 오르비 회원을 저격합니다. 18
일단 시작부터 상큼하게 국평오 타령으로 시작 미미미누를 '개관종'이라는 매우...
-
32341 44222 23211
-
수험번호 실수 5
수험번호나 짝수형 홀수형 마킹실수는 감독관이 확인하고 고치라 해주시나요? 갑자기...
-
야이 ㅅㅂ
-
ㅇㅈ 메타 도나요?? 13
ㅈㄱㄴ
-
복선 개지린다
-
좀만 모으면.. 12
금테 인데 진짜 맞팔 할사람 없을까..
-
남동생이 술에 취해서 집에 안들어온다고 난리를 치고 저희 가족은 힘으로 이길 수...
-
모기 미국에 개발햇다던데 해충은 늘 사람들 빡치게 진화하니까 암컷모기의 번식력이...
-
사탐은 사탐이니깐 유기하고 영어는 하기 싫어서 유기하고 국어는 모국어니깐 유기하고...
-
가장 먼저 떠오르는 게 좀 바뀐 듯
-
다이어트 3
총 7키로 빼는 게 목표인데 5키로까진 뺐어요 근데 여기서 2키로 더 빼기가 정말...
-
귓바퀴 링이 약간 조이는듯 근데 예쁨ㅠㅠ
-
https://youtube.com/shorts/qYFnZQKlxYY?si=BdtU1...
-
엄빠몰래 삼반수할거라 19패스 사려고 단기알바하는데.. 육체적힘듦은 견딜수있지만...
-
지금도 오르비에선 치평이 실시간으로 떨어지고 있기 때문...
-
피곤해서죽을래 1
죽은듯이자고싶군
-
감튀 찍어먹으면 존맛인데 살 ㅈㄴ찌겠지?
-
이게 맞는건가? 크리스마스 1달남은 시점에 모기잡으려고 불끄고 명상중인게 맞는거임?...
-
소변보고나서 지린내가 너무 심하게남 ㅠ
-
화장지우기 귀찮다 13
그냥 살자
-
대신 우진이 춤
-
존잘은 그냥 보이는 족족 산화시켜야댐
-
인증 19
(삭제) 는 풀배터리 ㅇㅈ
-
사실은 오르비에서 가장 편견없이 사람을 대할 수 있는게 아닐까? 9
사실은 오르비에서 가장 편견없이 사람을 대할 수 있는게 아닐까? 친구나 인간관계...
-
원점수로 나누는거 아니였음?
-
이것봐라? 나 참깨라면 먹는다!
-
맥스파이시 상하이
-
진짜마지막임뇨
-
ㅈㄱㄴ 잇올다닌다함
-
공부할 땐 그렇게 쏟아지더니 왜 펑펑 노니까 말똥하냐
-
제 능지론 맥날밖에 생각이 안남
-
뿡뿡뿡 11
뿡뿡~~뿡
-
주제넘게 눈은 높은데 자존감은 뒤지게 낮아서 스스로 연애할 자격 없다고 생각하기...
-
https://www.google.com/amp/s/www.cineplay.co.kr...
-
안녕하세요 저랑 piotics 특강 지인으로 하고 같이 10만원 할인받으실 분 계신가요?
-
대신 너네도 해줘
-
새벽이니 인증감 8
진짜 캡쳐는 ㄴㄴㄴㄴㄴㄴ
이거 문제는 어디서 받을수있나요.
http://orbi.kr/0006731700
마지막 문제 30번에서
일단 역함수존재이니까 양수는 보장이 되었구(일단 양끝에서 발산하므로)
2012학년도 30번처럼 어떤실수만 만족시키면 되니까 토미님 해설처럼 역함수의 미분은 어떤실수의 역함수의 역수로서 해석할수있게되고
일단 역함수가질조건이 2e보다크다이고
f'(x1)≤1/f'(x2)인 어떤실수이니까 좌변이 클조건은 극소일때 최소이고 우변도 극소일때 최대이니까 그래사 계산해도 무방한거죠?
토미님 해설이랑 일맥상통하는 이야기이긴한데
2개인변수를 1개인 변수로 줄이는게 근거가 잘 와닫지 않아서요
만약 도함수값의 최솟값이 1보다 크다면
모든 실수 x1 x3에 대해 도함수값이 둘 다 1보다 크므로
그 두 값의 곱이 1보다 작을 일은 없습니다
즉, 도함수값의 최솟값이 반드시 1보다 작거나 같아야만 합니다
2012 수능 30번에서의 '어떤' 구절을 처리하는 방법과 비슷한 논리를 사용하였다고 보면 되겠습니다
아 그렇네요
그럼 제 접근방식도 옳다고 할수있는거죠?
넵 맞습니다!!
변수를 1개로 봐도 무방한지에 대한 조건들을 아직 학습한적이 없어서 혼동이 오는데 변환가능한 시점들을 어떤 방식으로 판단하면되나요?
글쎄요... 이런 논리는 아직 유형화되지가 않아서 자신 있게 말씀을 못 드리겠습니다
다만, 식에 대한 적절한 해석을 통해 두개의 변수에 공통으로 성립하는 성질을 찾아내는 것이 바람직한 접근법이라는 정도는 말씀드릴 수 있겠네요
여튼 감사합니다
많이 배워가네요!
확인했어요! 감사함니다
문의하신 부분 보충설명 추가한 수정본으로 해설지 다시 올라갔어요~
좋아요 누르고 갑니다 수능 전과목 만점받으세요!!
감사합니다~ 좋은 결과 들고 다시 만나 뵙고 싶어요!!
~~~^^ 토미님 때문에 이과로 전과하고 싶어지네욧~~!! ^^!! ㅎㅎ
갓토미님이당
다른거는 다 풀기는 했는데 19번 하나가 안 풀리네요 19번 힌트나 해설 부탁드립니다 글고 문제 참 좋아요! 킬러문제들 퀄이 ㄷㄷ하네요
적분구간 평행이동이 힌트입니다
2-sinx와 2+cosx, 0과 pi/6이라는 적분구간에 주목하세요
저는 27번 부탁드려요.. 공도 무능력자긴한데.. 29번은 1분컷이었는데 27번이 공간지각능력이 부족해서 그런가 작도가 힘드네요..
선분BC의 중점을 점M이라 했을때 각AMD가 수직나오는것만 밝히면 문제 금방 풀려요 선분DH가 1이니깐 삼각형 DMH에서 각 DMH가 특수각 30도가 되기때문에 평면 ABC와 평면a와이루는 각도 합이 90도가 되거든요 그 후에 넓이/넓이로 이면각
다 맞게 말씀하셨는데, 이 경우 삼수선의 정리로 깔끔하게 풀립니다
ADH와 AHM이 같은 평면이라는 걸 알아차렸다면 교선, 수선이 바로 보여요