Farewell[1] : 초전도치
게시글 주소: https://iu.orbi.kr/00066251424
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하하하
-
농담입니다~ㅋㅋ
-
제가 12중부터 공부해서 고전시가 먼저 수강해서 고전시가 마지막강좌만 남고 수국김을...
-
햇살론 대출받을까 했는데 오르비 아이민 입력해야해서 포기함
-
누군가는 공공의 적이 되어버리고 입 닫는 조건으로 내실없는 인간을 꽂아주는 사회 그...
-
그래도 가능성 있을까요..? 8명 뽑는데 등수 보니까 5등이긴 하다만.. 하 ㅠ
-
반수생입니다 사회 돌아가는 원리가 궁금하고 사회를 바라보는 시선? 통찰력?을 얻을...
-
이브날에 놀지 오늘 놀아? ㅋㅋ
-
헬스장사람개많네 2
무슨일?
-
과탐 선택 1
생2 지1 할까 했는데 대성 패스만 구매했어서 메가 백호쌤 단과 구매해야하나 고민도...
-
당근할아버지 2
당근을 뺏으면 그냥 할아버지
-
차단하게
-
부모님과 함께 ㅇㅇ
-
맛있는 음료수 4
닥터페퍼
-
왜클릭
-
제가 나이가 좀 많고 수능에서 커하를 찍기도 해서 이번에 꼭 가야 하거든요ㅠㅠ...
-
그래서 자제함..
-
ㅋㅋㅋ
-
수요가 잇음?
-
이 점수로 메디컬 붙을리가 없잖아...ㅠ
-
다시 들어옴 5
춥다..
-
분명히 난 시발점이랑 개념의 나비효과 들으려고 했는데 2
유튜브에서 강민철이랑 조정식이 서로 디스하는거 보고있네…
-
현역 : 설교,경희공 재수 : 수학 지구빼고 씹망 삼수 : 연고공, 한양높공 사수...
-
1. 중대 논술합격 검색 2. 합격되어있음 3. 감격의 눈물 4. 집안도 신남 5....
-
안녕하십니까 저번 글...
-
킥오프 파데했는데 하.. 어려워서 죽고싶음 내가 갸빡대가리겠지 진짜 죽고싶다. .
-
블랙리스트오른적 있음 ㅋㅋ 막 내 아이민가지고 부검하고 메모장에 적어놓더라
-
문득 생각난건데 12
작년에 저때문에 상처받으신분들께 다시금 이자리를 빌어 사죄드립니다 민폐끼친점 송구스럽습니다
-
오르비 같이 하자
-
뭐지 옆 학교들은 다 있는데 개명 전 이름으로 쳐도 안 나오고 당황스럽다
-
태그에도 없는 20세기 사람이 있다고?
-
정법 표점 0
예비고3인데 정법 이번에 표점도 낮다고 해서 해야할지 고민이네요ㅠㅠ (고2때 정법...
-
논술준비 하나도 안하고 미적만 해서 2문제는 걍 버리고 확통은 무지성 곱해서 더하고...
-
지금 당신의 뱃지는 30
수시로 딴 건가요 정시로 딴 건가요
-
형태변환자 0
야하네요
-
드가자
-
02년생인데 26 볼까 고민중
-
의사선생님은 간에 기름낀거 같다고 운동하라고 하시네요 혹시 그대로 두면 어떻게...
-
저도덕코주세요 2
복권에 덕코꼴박많이했어요…
-
이정도면 안정인가요? ㅠㅠㅠ
-
새르비 하려면 자야 되는데
-
ㄷㄷ
-
재작년에 A대학 에타 가입 후 탈퇴, 올해 B대학 에타 가입했고 정시로 학교 옮길...
-
수2 상 권혁석 이승열 유명환 수2 하 백종석 황지용 최병규 후기 듣고싶어요
-
등수 변화만 좀 보다가 몇명꼬셔서 맛집 탐방 갈듯 다들 맛저하세요!!
-
생명 홍준용 4
어떤분이 쪽지 주신거 어쩌다보니 답변을 정성스레했는데 아까워서 공유함(**제...
-
덕코 구걸 5
2만덕 이상을 복권에 탕진했어요... 덕코 좀 주세요..
-
"모든 것은 에피를 위해" 논술은 에피 안 줘서 우럿서
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼