RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
게시글 주소: https://iu.orbi.kr/00061810441
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (1/3) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
이전 칼럼
[수학Ⅱ칼럼] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (1/3) >
에서 이어집니다
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
수능 문제가 매우 친절하게 다항함수 f(x)의 근에 대한 정보를 직접적으로 제공할 수도 있지만,
그렇지 않고 근에 대한 정보를 간접적으로 제공할 수도 있습니다.
그 방법 중 하나가 근에 대한 정보,
즉 다항함수 f(x)에 대해 x축(y=0) 위의 정보를 주는 대신
상수함수 y=k 위의 정보를 주는 것입니다.
이때, 우리는 (1)-①에서와 유사한 방법으로 정보를 정리할 수 있습니다.
예를 들어, 삼차함수 f(x)에 대해 f(3)=3이라는 정보가 주어져 있을 경우,
f(x) = ax³+bx²+cx+d , 27a+9b+3c+d = 3
으로 정리하는 대신
f(x) = (x-3)(px²+qx+r)+3
와 같이 나머지 정보를 정리할 수 있다는 것이지요.
해당 개념을 활용해 예제 하나를 풀어 봅시다.
아주 기본적인 정보 나열을 통해 해당 문제를 푸는 방법은
삼차함수 f(x) = ax³+bx²+cx+d 에 대해
f(0) = -3 이므로 d = -3
f(1) = 3 이므로 a+b+c+d = 3, a+b+c = 6,
f(2) = 3 이므로 8a+4b+2c+d = 3, 8a+4b+2c = 6, 4a+2b+c = 3
f(3) = 3 이므로 27a+9b+3c+d = 3, 27a+9b+3c = 6, 9a+3b+c = 2,
이므로
두 번째 식과 세 번째 식에서 (4a+2b+c)-(a+b+c) = 3a+b = -3
두 번째 식과 네 번째 식에서 (9a+3b+c)-(a+b+c) = 8a+2b = -4, 4a+b = -2,
(4a+b)-(3a+b) = a = (-2)-(-3) = 1
3a+b = b+3 = -3, b = -6
a+b+c = c+1-6 = c-5 = 6, c=11
f(x) = x³-6x²+11x-3 , f’(x) = 3x²-12x+11,
f’(4) = 48-48+11 = 11 (Q.E.D.)
와 같습니다.
그런데, f(1) = f(2) = f(3) = 3 이라는 정보를 단순한 정보가 아니라
f(x)의 근에 대한 간접정보로 이해하게 된다면 풀이가 확 달라지게 됩니다.
g(x)=3 , h(x)=f(x)-g(x) 로 새로운 함수를 정의해 봅시다.
그러면 다음 정보를 활용했을 때
h(1) = f(1)-g(1) = 3-3 = 0
h(2) = f(2)-g(2) = 3-3 = 0
h(3) = f(3)-g(3) = 3-3 = 0
가 되므로, 해당 함수 h(x)에 대해
h(x) = f(x)-g(x) = f(x)-3 = a(x-1)(x-2)(x-3) 으로 정리할 수 있고,
이를 다시 f(x)에 대해 정리하면
f(x) = a(x-1)(x-2)(x-3) +3 으로 정리할 수 있습니다.
이렇게 정리하고 나면 위의 풀이가 다음과 같이 달라지죠.
f(0) = a×(-1)×(-2)×(-3)+3 = 3-6a = -3, a=1
f(x) = (x-1)(x-2)(x-3)+3, f’(x) = (x-2)(x-3)+(x-1)(x-3)+(x-1)(x-2)
f’(4) = 2×1+3×1+3×2 = 11 (Q.E.D.)
위의 문제는 애초에 그렇게 어려운 문제가 아니기 때문에
굳이 문제를 이렇게 풀어야 하는지에 대한 의문이 있을 수도 있겠지만,
이러한 정보를 활용하는 방법은 후반에 삼차, 사차함수 고난도 문제를 풀 때 빛을 발합니다.
‘극댓값 또는 극솟값’에 대한 정보가 나왔을 때 이를 유용하게 사용할 수 있죠.
예를 들면,
“최고차항의 계수가 1인 삼차함수 f(x)가 x=3에서 극솟값 4를 갖는다”
와 같은 발문이 있을 경우,
해당 개념을 완벽히 숙지하고 있고 활용이 가능한 상태일 경우
해당 함수를 바로
f(x) = (x-3)²(x-k)+4, (k<3)
과 같은 방식으로 정리할 수 있는 것입니다.
(자세한 설명을 일부러 적지 않을 테니, 한번 머리를 굴려서 시도해 보시기 바랍니다.)
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
x축과 평행한, 즉 기울기가 0인 직선인 상수함수 y=k 위의 정보뿐 아니라
기울기가 0이 아닌 직선인 일차함수 y=px+q 위에 대한 정보가 주어졌을 경우에도
위와 같은 방식을 활용할 수 있습니다.
특히 함수의 접선과 관련된 문제가 나왔을 경우 해당 개념을 유용하게 활용할 수 있죠.
y=f(x)의 x=a에서의 접선 y=g(x)는 by definition,
f(a)=g(a)이고 f’(a)=g’(a)인 직선입니다.
( 접선의 방정식: y = f’(a)(x-a)+f(a) )
따라서 새로운 함수 h(x) = f(x)-g(x) 를 정의한다면 h(x)는
h(a) = f(a)-g(a) = 0, h’(a) = f’(a)-g’(a) = 0 이라는 특징을 자동으로 만족하게 되지요.
바로 예제를 풀어 봅시다.
최고차항의 계수가 1인 삼차함수 f(x)의 x=2에서의 접선 g(x)는
점 (-1, 1)과 점 (2, 4)를 지나네요.
x증가량이 3, y증가량이 3이므로 직선의 기울기는 1, y절편은 2입니다.
즉, g(x) = x+2 이다.
또한, f(x)와 g(x)의 그래프가 x=2에서 접하고 x=-1에서 만나므로
h(x) = f(x)-g(x) 에 대하여 h(x)는 최고차항의 계수가 1인 삼차함수이고
h(2) = 0, h’(2) = 0, h(-1) = 0 입니다.
따라서 h(x) = f(x)-(x+2) = (x-2)²(x+1) 이고,
f(x) = (x-2)²(x+1)+(x+2), h(0) = (-2)²×1+2 = 6 (Q.E.D.)
이 되겠습니다.
위 내용은 정말
매우매우매우매우매우매우매우매우매우매우 중요하니
꼭 제대로 숙지하실 필요가 있겠습니다.
지금 보기에는 그렇게 어려운 개념이 아닌 것처럼 보일 수도 있고
많은 분들이 이미 어렴풋이 알고 있었던 내용이기도 하겠지만,
해당 개념 및 풀이 방식을 완벽히 이해하고 활용할 수 있을 때
추후 등장할 삼차함수 및 사차함수의 고난도 문제에 효과적으로 접근할 수 있습니다.
만약 수능 수학 고득점을 목표로 하시는 분이시라면,
반드시 해당 내용을 정독하며 복습하고,
다양한 접선 문제들에 적용하여 풀어보시기를 바랍니다.
------------------------------------------------------------------------
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 >
칼럼은 중요한 내용이 너무 많고 전달해야 할 정보도 많아
가독성 및 여러분들의 지구력을 위해
총 3개의 게시물로 작성될 예정입니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 질문 및 피드백이 불가능한 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는
RC - [수학Ⅱ] 삼차함수 네모박스 < 01 다항함수의 도출 및 함수의 이해 (3/3) >
(링크)
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
연의 목표로 꼬우
-
어그로 ㅈㅅ 사탐 다 노베인데 생윤 사문하는거 어떰? 사문은 확정이고 어떤 사람들은...
-
올해가 특수케이스인가요? 사1과1하면 그래도 안전빵으로 가능한건가요?
-
학교에서 상위 어느정도죠
-
문과는 대기업 들어가기보다, '법세노관'이 훨씬 더 쉽습니다. 0
법세노관 합격자들의 평균이 '건동홍숙' 라인이라는 것은 유명합니다. 매우...
-
걍 학교 다니는 6년 내내 좀 마음고생할거 같은 느낌이 드네요.. 의대생 다...
-
왕자 잘게 7
코코낸내
-
생2 과목소개 1
나름 열심히 썼으니까 반응 좀 주시면 감사하겟습니다 안녕하세요, 물개라고 합니다....
-
어떤 식으로 해야할까 영어기사 영어뉴스 영어논문 이런 거 읽고싶음 지금도 읽을 순...
-
오늘 의평원에서 나온 보도자료에요 현재 원광대는 유예 상태로 인증된 의대이기에...
-
지거국이 불인증 확률 더 낮겠죠?
-
고려대학교 수학과 고려대, 서강대, 시립대 등 수학과 수리논술 합격 (기타 :...
-
빨리 유니폼 내라고 좋은말할때
-
아...이게뭐노...
-
영어 인강도 낮에 좀 봐둘걸.. 인강보는거 지양하고싶어서 집중력 떨어질때쯔음...
-
인스타 아이디 3
감성있고 쌈뽕한거 추천 부탁
-
ㅇㅇ
-
신생아같다
-
오르비 하나보고 의사여론 ㅇㅈㄹ하는건 진짜 웃음벨이긴함 1
이런애들이 스카이가서 메떨개잡대 수시충 소리하다가 반수하는듯
-
문과한테는 너무 버거운데요.. 타원 초점 보자마자 싱글벙글 하면서 풀었는데 갑자기...
-
Seid ir Das Essen? Nein, Weir sind Der Jäger...
-
이미유리천장일수도있는거잖아내실력이
-
그냥 궁금해가지고요
-
일단 잘생기고 이쁘면 학생들이 자연스럽게 따르고 열심히 공부하게 됨 선생이...
-
제목 그대로 입니다. 농어촌 정시는 졸업하고나서 농어촌 정시 혜택을 몇년동안 받을수...
-
나는 문크예거(이하 문)이 조국 자기 사람이라고 생각했다고 믿지 않음. 영부인 카톡...
-
강의는 ebs 들어보려고 하는데 추천좀요ㅠㅠ
-
ㅠㅠ 나중에 뇌 수술할때 의사들 편한거 있네..
-
올해 김승리 커리 어때요? 작년 재작년 백분위 96입니다 컨텐츠때매 풀커리 따라가는것도 있습니다!
-
매일 커피드시나요..? 진짜 정신을 못차리겠네요 이번이 처음도 아니고 작년...
-
이정환 선생님 수업이 나을까요 시대인재 수업이 나을까요?
-
설민수가 내얼굴에 싱크홀 만들거같음
-
대한민국에 저런사람들이 있었구나 ㄷㄷ
-
노베라서 조정식 voca , 시작해 하는 중인데 대성 추천이 많아서 대성으로...
-
사탐런 했습니다. 물화에서 사문생윤으로 바꿨는데 올해(2026)대입에서 2사탐...
-
점공 서울대 1순위도 막상 의대 붙으면 고민되지 않나요? 2
나만그럴것같아?
-
저는 예전에 제가 좋아했던 여자애가 너는 빨강색 쓰는구나? 나는 파랑색 쓰는데....
-
다 쏴죽여야 된다 지들이 누구 덕분에 매일 발뻗잠하는건지도 모르는 멍청한 아군이...
-
수학 하나는 그래도 내가땀.
-
제타써본사람? 1
쓰고있는데 길들이기 어렵다...
-
ㅠㅠ..
-
근데 난 반수해야하니 돈 아껴야지..
-
서성한~고대 정도 성적인데 1월 중순에 하면 너무 늦은 걸까요?
-
안녕하세요 과탐 선택 관련해서 고민하고있는 07 현역입니다. (재수까지 염두에 두고...
-
ㅠㅠ
-
의평원 인증 가지고 선동이라고 뭐라고 욕 많이 먹었었는데;; 제 말 듣고 원서쓸때...
-
ㅠㅠㅠㅠ
첫번째 댓글의 주인공이 되어보세요.