스포) 지파급 2회 후기
게시글 주소: https://iu.orbi.kr/00059357705
스포없는후기
=> 감히 수능 전날에 풀만한 실모라고 할 수 있을것같아요.
문제 퀄이나 난이도, 푸는 사람의 체감 이런 것들이 가장 수능에 가깝다고 느껴집니다. 매우 좋았음!! :)
아래는 스포 포함 후기가 있읍니다.
==============
(스포방지턱)
==============
선택 : 미적
틀 : 13, 15, 30 // 점 : 88
현실적으로 수능장 체감난이도가 딱 이정도라고 보는데
88이라니
호머를 해도 92라서 굉장히 참담한 심정,,,
뭐 어쩌겠습니가.
기억에 남는 문항
12. 사실 딱히 어려운 문항은 아닌데 그냥 문항 자체가 재미있고 참신해서 기억에 남는다. 곱의 공비가 -1이라는 것이 뻔하긴긴 한데
13. <오답 사유 : 못풂> 이게...맞아요??? 시발 진짜 하라고?? << 답지: 네~진짜 하시면 됩니다~ 허허.. 뒤에 미적 무등비도 그렇고 이 회차가 도형파트에 특히 좀 계산이 자비가 없다. 답지는 OBC를 세타로 잡고 계산하던데 나는 호 BC에 대한 C1의 중심각을 세타로 두고 계산했기 때문에 더 산으로 갔다. 안 그래도 계산이 빡센데 의도한 풀이와 설정이 다르면 곱절로 빡세지기 때문에 지옥같았다. 마지막의 마지막까지 못 푼 문제였고
C2반지름 3정도가 적당한가? 7더해서 2나누면 5니까? 같은 생각을 하긴 했으나 마찬가지로 거의 다 푼 채로 계산이 살짝 말리고 있던 30번을 마무리하는게 확실하다 생각해서 그냥 냅뒀다. 정작 그것도 틀렸지만. 적당히 괴로워 보였으면 어떻게든 풀려고 들다가 말릴수도 있었을 것 같은데 식 띄워 놓고 보면 압도적으로 괴로워서 그나마 미련없이 제낄수있었다.
15. <오답 사유 : 케이스 착각> 쉬운건데, k가 12보다 클 때 최대 1인 것을 k가 12일 때만 최대가 1찍힌다고 착각, 19(1번) 쓰고 장렬히 전사. 13번의 무자비함(?) 때문인지 한번 봐준 것 같은 느낌도 들고요.
20. 처음에 딱 봤을 때 문항 독해가 완전히 되지 않았었음. t-3일때 0이고, 4-t일때 0이고, 근데 모든 t에 대해서...????? 네???? 이러고있다가 t-3=4-t에서 나온 7/2라는 숫자를 가지고(그리고 답 내기 위해 넣어야 하는 9/2를 가지고) 무지성 특수특수개특수 갈기다가 문항 이해를 완료하고 안정적으로 풀었음.
21. 13번의 충격이 약간 남아있는 채로 패닉 상태로 풀었기 때문에 m값을 그냥 무지성 나열해서 구했다. 되게 단순한 규칙인데 그조차도 보이지 않았음. 반성...해야겠지?
하지만 나름 노가다 원툴이라 나름 빠르게 뛰고 맞힘 ㅋㅋ
22. 맛있네요. '각인데'하고 딱 해보면 바로 그게 답 되는 케이스... 너무 맛있다....
27. 아니 저한테 왜 그러세요22 내접 직사각형 한 변 길이를 구해 보면 대단히 우울한 숫자가 나오기 때문에, 처음에 엄청 당황스럽다. 하지만 그림 자체가 익숙한 그림인데다, 초항도 그지같고 공비도 그지같으니까 뭐 어떻게 밀면 답이 나오게 되어있지 않을까... 하고 끝까지 밀었어야 한다. 약간 용기테스트형 문제,,,나는 용기가 없었기 때문에 29까지 갔다 와서 다시 계산했다.
29. 어떤 의미에선 근사저격?
30. <오답사유 : 계산미스> 마지막 답 내는 계산에서 삐끗하여 안타깝게 사망하였다. 문항 자체는 계산 부담이 조금은 있지만 그래도 심하지 않은 편이고, 치환적분 각을 보는 변형이 억지스럽지 않기 때문에 머,,,그럭저럭 풀어나갈 수 있었다.
특히 혹시나 이 각을 못 볼까봐, x=0에서의 접선을 문항에서 한번 언급하여 f(x)를 한번 미분시켜보는 설계? 약간 출제자의 인도? 그런 것이 느껴져 감탄했다. 실제 기울기 값으로는 평균변화율을 쓰게 될테지만 아무래도 식을 얼추 아는 함수의 접선 얘기 나오면 일단 미분해서 식을 띄워놓고 보는 사람이 많으니까.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
장난이 아니라 진심으로 작년이 기억에 없어요 재작년은 뭔가 기억 많이 나는데 작년은...
-
농ㅋㅋㅋ도 0
농농ㅋㅋㅋㅋㅋ 농ㅋㅋㅋ도
-
퀘벡 등급심의 0
캐나다 퀘벡 주의 영화 심의는 왜 상당히 관대하니
-
궁금
-
3모91 88 84 20 41( 99 98 2 5n 91) 수능 91 92 88...
-
재종에서 굉장히 많은 수학 선생님 수업을 들었던 올해 느낀 것이 수학같은 과목은...
-
정시 라인 0
인서울 가능한가요? 컴공 희망합니다ㅜㅜ
-
N>3인데 의는 커녕 메디컬 들이지도 못한 사람 진짜 존재함 ㅇㅇ
-
그림 수영 검도 보컬 일본어 중국어 그림은 내 머리로는 ㅈㄴ 간지나는 장면이...
-
하지만 기다릴것
-
올수능 결과보고 사탐런 더 몰려올텐데 걔네 과탐하듯 탐구에 힘조절 잘못하면 진짜...
-
출처:...
-
이제글그만쓸게요 10
오늘너무과했어요
-
어차피 수능이랑은 큰 관련이 없긴한데 그냥 겨울방학 성적표같은 느낌이라 최선을...
-
어떤 선택을 하게 될 때 어떻게 해야 잘 될까보다는 어떻게 해야 나중에 더 후회하지...
-
수능 미적 73점이고 원래 다니던 학원에서는 미적분 개념원리만 2회독 했음 이번에...
-
눈빛에 베일 듯 우린 날카로워
-
설거지하다가 18
접시 깸
-
ㅎㅇㅎㅇ 3
-
질문)수능 만점가까운 점수는 메가측에서 직접 컨설팅 해줄까요?? 2
어디선가 성적 나오기 전에 이미 컨택이 있다고 들었는데요
-
널 사랑하는 거지~
-
이제 과탐 원과목도 투과목처럼 고여버려서 사탐런을 하라고 하던데 컴공을 지망한다면...
-
수원을 뉴런 2회독 한 고3 올라가는 고2 입니다 수투는 이창무 심.특 듣고 있고...
-
내년에 겨울방학동안 두각 현강을 들을 것 같은데 시간표가 고민이네요. 단과 듣고...
-
과연 무엇이 될까
-
모여라
-
정말 와닿음뇨 사회라는게 필요에의해만들어진건지 원래존재햤던건진잘모르겠지만 사회안에서...
-
맨유의 정상화 보여주시나요
-
이거밖에없었는데 그나마 더 적어보자면 친구비슷한애들 몇명이랑 고등학교졸업장..
-
던지고싶군
-
m:n 외분이면 m만큼 대쉬하고 n만큼 떨어지기 이렇게 해서 외움 그러니까 m-n이 되겠네하고 그럼
-
지삼다로 출격. 3
오늘은 솔랭이군..
-
언미화생 0
100 100 1 50 41이면 메쟈의 어디까지 되나
-
나도친구 1
나도미소녀히로인
-
슬프다. 11
1년 해서 남은 게 오르비 금테뿐이라는 게.
-
마음같아선 정시 컨설팅 받고싶지만 그럴 돈이 없어서 독학을 해야할 것 같은데...
-
내년 수능 0
반수 계획 중인데, 문과로 24수능 22243인가 받았었고(3은 지1), 좀...
-
한양 오후2인데 90점은 좀 에바아닌가.. 아무리 미적만 나왔어도 계산이 미친듯이...
-
너무 급해서 영어 시간? 에 몇개 얇게 마킹한 것 같은데 급 불안하네요 요즘은 스캔...
-
정말이지 무의미하다 아무리 꿈이나 희망을 갖고 있어도, 행복한 인생을 보 낼 수...
-
13.15km 5
걷기
-
말랑말랑 아기같음..
-
사랑해 난너희들밖에없어
-
정시로는 절대 못 갈 라인 논술을 써버린 나...
-
질문받아요 21
슬슬 학교/학과 선택 질문이 좀 보이네요 저는 서울대 공대/자연대에서 썩고 있는...
-
그만 커라 나만의 작은 미3누로 돌아와줘
-
ㅠㅠ 나는 소인이여서 결과른 기다림이 이토록 힘든것인가
-
오늘은 집에서 맛있는 간장계란볶음밥을 먹어요
-
김범준 대기 0
공통 1000번대 미적 700번댄데 이거 빠지나요... 작년 기준으로는 시대 신청...
첫번째 댓글의 주인공이 되어보세요.