미적 30번 푼 사람들 와바
게시글 주소: https://iu.orbi.kr/00059103798
끝나고 푼거임
맞음?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
펴자마자 기하가 그리워지는구나.. 근데 정사영 보면 다시 확통이 그리울 듯
-
한티 밥짓는집 0
왔다
-
A는 B라는 것에서 B`는 C함을 알 수 있다 이런 형식의 선지를 만들 때 평가원...
-
닉변 완료. 1
후후...
-
치던 사람 사라졌네 수능 끝나고 뭐라뭐라 하다가 긴코원숭이 프사 단 사람이 고소선언...
-
맬 2,3시까지 놀아도 갠찮았는데 요즘음 10시만 되도 피곤함이...
-
24학년 헌내기예요
-
회화황님께질문))수능 영어공부 하면서 회화공부?를 살짝 덧붙일 수 있을까요 0
Y따로 30분이상 투자할 시간은 없습니당 다만 1년 내내 1시간~1.5시간을...
-
씨뮬 69수능 평가원 기출을 한 3-4일에 1회분씩 풀고 분석강의랑 같이 분석을 할...
-
텝스나 수학 시험 같은거 서울대 기초교육원 공지사항에 나와있네요 메인 홈페이지에...
-
와 너무 심한데…
-
홍대 점공계산기 0
지전인데 이거 추합될까요 ㅠㅠ?
-
그러니까 안되겠다 더이상 못하겠다 감이 들면 이제 그만하고 입시판 뜨는것도 방법임...
-
뜬금포 ㅇㅈ 1
흐헤헤
-
“대회도 나갔었는데” 과학상자 영업종료… 8090 추억 품고 43년 역사 마무리 14
1980~90년대생들에게는 초등생 시절 과학교재로 친숙한 ‘과학상자’가 이달 영업을...
-
중대경영 컷 2
중대 경영 컷 진학사에서 얼마로 잡았는지 아시는분 있으신가요ㅜㅜㅜ
-
진짜 잘 낸 수학 문제 17
교사경까지 통틀어서 난이도랑 관계없이 이 문제는 진짜 잘 냈다 하는 수학 문제 있나요?
-
22 33354 23 군대 24 55365 / 군수 25 13322 / 12학점...
-
정말 좀 친다 하는 문과생들 cpa 준비 많이 해서 회계사가 그렇게 잘버나 싶네요
-
벌써 몇번째인지 모르겠노 접을때가 됐나
-
새터 날짜 1
새터 보통 날짜가 어떻게 되나요? 오티도 알려주세요!
-
눈 침침하고 물 많이마시고 발 저리고 밥 많이먹는데 혈당치는 찌를때마다 지극히...
-
口是禍之門 (구시화지문) 입은 화를 부르는 문이고 舌是斬身刀 (설시참신도) 혀는...
-
문학 goat이라 하던데 대충 어떤느낌인지 그리고 독서도 괜찮나요?
-
전자후자 뭐가더좋음?
-
궁금함
-
Was turn?
-
몽글몽글
-
ㄹㅇ 궁금한디 썰좀 풀어주세요
-
쓴소리 좀 4
공부하고 싶지 않아요
-
확통런 1
안녕하세요 올해 재수를 하는데 선택과목때문에 고민이 많습니다...2025학년도 수능...
-
차기 갤주 등장 2
대 요 요
-
자가진료는 좀 필요해보이긴 함
-
현역이 실모 시즌에만 바짝 해도 백분위 99가 나옴
-
이게 건축공학처럼 보여? 빼박 건축학과 아니야??? 자전 전공소개에 이렇게 돼있으면...
-
차단 꾸욱 9
-
근데 정신건강을 좀 챙겨야거같아요 선생님 의사샘이신거같은데 환자보기보다도 자신을 좀...
-
알림 무엇 서울대 치대랑 한양대 의대 합격권이라던데 대깨설이라 어디갈지 너무...
-
너무 즐거워서....다들 투투 해야겠지? (제발 해주세요)
-
작수 높4등급 나왔는데 문학은 3개 틀리고 비문학은 6개 정도 틀렸어용 나머진...
-
인생 ㅅㅂ
-
상주하면서 저러고있구나 그 나이 드시고 그렇게 하실게 없나 싶기도하고 할배가 뭔데...
-
오스 보드따고 로컬 나간다 해서 오쓰 그 자체가 자기 전문이 되는게 아님 환자를...
-
홍대 기계 점공 3
붙을 수 있을 까요??
-
개정 많이 됬나요???
-
좋은걸까요 안좋은걸까요
-
잘자요~ 0
쿠팡 갓다가 이제 잠뇨..
-
아수라에서 올해 수능 이럴'수도' 있어 라고 한것중에 진짜 그렇게 된게 많긴한듯...
대충 ln갖고 치환 존나 때릴거 같은 문제,,,,
30번 끝나고 보니까 할만하네 다른거 버리고 이거풀걸
이제 지금까지의 두배 연산하시면댐...
연산은 계산기한테 시키고 싶다...
풀이 자체는 맞는거죠?
마자여
16이 답아님?
맞는데 전 시험시간땨 못풀어서 한번 풀이만 해본거에요
항 4개의 계수를 식 4개 이용해서 다 구해내면 되는 거 맞음??
간단하긴 한데 계산을 많이 해야하네;
사실 f의 세 정점이 y=x^2위에 있다는걸 활용해 인수 3개 정하고 시작하면... 여전히 계산 많음
1. (가) 조건이 험악하게 생겼지만 f'(x)/f(x)-1/x 이므로 적분식은 lnㅣf(x)ㅣ-lnㅣxㅣ=lnㅣf(x)/xㅣ로 식을 정리할 수 있고 f(3)=9f(1)임을 얻을 수 있다
2. (나) 조건에서 함수 g(x)는 미분가능하므로 극값을 가지면 g'(x)=0이다. 따라서 g'(1)=g'(3)=0에서 f(1)=f'(1)이고 f(3)=f'(3)
3. g(1)=0이므로 f(1)=1이고 따라서 f'(1)=1, f(3)=9=f'(3) 임을 알 수 있다
4. 사차함수에 대해 5가지 정보를 알기에 모든 계수를 결정할 수 있다. f(1)=f'(1)=1에서 f(x)=(x-1)^2*(ax^2+bx+c)+1로 식을 잡을 수 있고 f(0)=0, f(3)=9=f'(3)을 활용해 a=-1/4, b=7/4, c=-1임을 확인할 수 있다.
5. f'(2)=15/4이고 적분식을 [xf'(x)-f(x)]/x^2*g(x)로 바라보면 전자를 적분해 f(x)/x 후자를 미분해 g'(x)=f'(x)/f(x)로 바라볼 수 있고 식을 정리하면 f(3)g(3)/3-integrate f'(x)/x from 1 to 3을 얻을 수 있음. 계산하면 ...