수학2 교과서 개념 정리, 수능 개념 정리 및 증명
게시글 주소: https://iu.orbi.kr/00058838222
수학2 (함수의 극한, 함수의 연속, 미분계수와 도함수, 접선의 방정식) 관련 내신 개념 정리.pdf
자료 만들다가 공유해두기 괜찮을 것 같아 남깁니다.
<교과서 개념>
1. 함수의 극한
2. 함수의 연속
3. 미분계수
4. 도함수
5. 도함수의 활용 1 (접선의 방정식)
<수능 개념 + alpha>
1. 구간 별 함수의 미분가능성
2. 곱함수의 미분가능성
3. 절댓값 함수의 미분가능성
4. 기함수, 우함수
5. 0/0꼴 극한에서의 미분계수의 정의 활용 (수능 수학 수준에서 로피탈의 정리 대체 가능)
6. 곱함수의 연속성
7. 미정계수의 결정 ((분모)->0일 때 (분자)->0)
8. 미정계수의 결정 2 ((분자)->0일 때 수렴값 0 아니면 (분모)->0)
9. 편미분
10. 대칭성
11. 구간 별 함수의 연속성
+교과서 개념, 수능 개념은 한완수에서 인용한 표현이지만 실제로 <수능 개념 + alpha>에 미정계수의 결정 같은 것들은 교과서 개념으로 분류되었던 것으로 기억합니다. 성질과 관련된 것들을 전자, 그로부터 유도할 수 있는 것들 등을 후자로 확인해주시면 감사하겠습니다!
0 XDK (+1,000)
-
1,000
-
ㅇㅇ
-
군대에서 수능 or 편입에 관해 조언 부탁드립니다. 1
안녕하세요, 다음주 이맘때, 1월 13일자로 논산 훈련소로 입대하는 화생방병입니다....
-
그러하다. 다들 기하합시다
-
왜 노조들 시위할 때 저렇게 했는지 이해했을 사람들 개많았을 거임 ㅋㅋ 무지성 반달...
-
저는 사실 특별전형으로 대학을 갈 수 있어요... (ㄹㅇㄹㅇ 찐 사실임...)...
-
슬퍼요
-
현역때 생윤 + 한지 했었는데 생윤으로 통수 당해서 재수땐 쌍지 해보려고 하는데...
-
국어 인강이 잘 안받는거같아서 피램 풀커리 독학으로 해보려 하는데 확신이 잘...
-
쿠바나 샷이 좋네요..
-
반수한다면 새터 ot 안가는게 정배인가요?
-
일반고 내신 1.7이고 서울대를 가고 싶음. 근데 우리 학교가 생기부를 잘...
-
으흐흐
-
방금 역대급 방구낌 15
미치겟슴
-
그게 뭐임
-
역시 아이야
-
[AI 세특 작성]세특 작성 노하우 5 - 마무리 및 요약 0
지금까지 학생부 세특의 중요성과 작성 요령, 구체적인 사례 등을 살펴보았습니다....
-
*
-
님들 다 틀딱이라는 거임
-
연세대 약대 2
연세대약대 백분위70%가 96.25인데 올1이면 연대약대 가는거 아닌가요
-
전 고2때 오르비에서 고3들 고민상담 받아주고 다녔음 7
고2 정시파이터들이 자기객관화 잘 안됨…ㅋㅋㅋㅋㅋㅋ 나도 수능준비하는데 경쟁자로...
-
맞팔해주세요 8
팔로워 늘려서 한탕 해먹게
-
현우진 강기원 2
강기원 미적 현우진 뉴분감 병행 가능한 양인가요?
-
제가 재수 시작하는 주 주말에 오래 좋아한 연예인이 팬들 모아 영화 단체관람도 하고...
-
재수 영어 노베 3
올해 수능에서 영어 5떴습니다 문법 같은 경우는 괜찮은데 독해와 특히 단어가 많이...
-
정신은 멀쩡한데 머리가 깨질듯 아파오고 얼굴이 새빨개짐
-
쌤으로 등록할 수 있음요? 근데 좀 학생들이 있나요?
-
사람 불안하게 어..
-
85년생이래요
-
그냥 소주는 못마시겠음...
-
수시로 점공 확인중어둠의 표본들아 제발 점공 입력좀 해라
-
닉변 1
완
-
정시 추합 마지막날까지 다중등록으로 홀드하고 끝난뒤에 원서등록 취소해서 추가모집으로 보내면됨 ㅇㅇ
-
서울대부터 쫙 휴학 한거임?
-
생지러 n수생들 2
지금 머풀어요?
-
올해 갔어도 03이라 틀딱인데 내년에는 더 틀딱일 거 아니야
-
칼국수 맛집에 빵집 개많음 걍 수도로 하자
-
만약 진짜 주량이 반병이라면 한잔이라고 해야함
-
어떻게 매를 얼릴 수가 있음 너무하네
-
이걸 실제로 1월에 쓰곤 했던ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아 그립다.
-
동사 누구들음 8
현역때 이다지 풀커리탔음 근데 이번 수능 동사에서 아무리 생각해도 이거 다맞으려면...
-
아 점공 ㅅㅂ 0
하나 밀렸다......내 뒤로 와 제발......
-
야무진 조합
-
[단독] 의대생 단체, 올해에도 ‘휴학계 제출’로 대정부 투쟁 8
정부의 의대 증원 정책 등에 반발해 휴학 중인 의과대학 학생들이 작년에 이어...
-
지거국이고 정시 14명 뽑고 마지막 업데이트때 30명중에 1등 7칸이였고 일주일넘게...
-
70명 좀 넘게 모집하는데
-
노래 잘 불러지나요
-
Eft 아니고요 etf도 아니며 nft도 아닙니다. 근데 제목은 낚시가 아니라 진짜입니다.
-
봇치 수학을 풀던 중 10
너무 어렵다... 수1 지수로그에서 벽느끼는 중... 정상모T 올인원 넘 어렵다...
-
ㅈㄱㄴ
사랑해요
참고로 9. 편미분 같은 경우 한국에선 대학 미적분학에서 처음 배우는 것으로 알고 있지만, '도함수의 정의'를 활용하는 수2 유형 중 'f(x+y)=f(x)+f(y)+ax^2y+axy^2-bxy+2'과 같은 항등식을 제시해줬을 때 편미분을 활용하면 도함수의 정의를 활용할 때보다 조금 더 빨리 문제를 해결할 수 있어 넣었습니다. 다만 파일에 있는 부분은 도함수의 정의처럼 편도함수의 정의를 써둔 것이고 실제 연산은 밑 영상 참고하시면 좋을 것 같습니다!
https://youtu.be/NKazLqcU-Fk
논술과 수능을 모두잡는 ㄷㄷ
증명은 한 번쯤 직접 해보시면 학습에 도움이 될 것 같고 결과적으로 수능을 보기 직전에는 자료에 있는 개념들을 활용할 때 '머릿속으로 증명을 훅 훑고 지나간다는 느낌으로' 조건을 잘 확인하고 활용해 문제 풀이 시간을 단축하시면 좋을 것 같습니다. 이를테면 '구간 별 함수의 미분가능성'을 사용할 때 구간 별 함수가 미분가능한지 확인하고, 가능하다면 미분계수의 정의를 쓰는 대신 함숫값이 같음과 미분계수값이 같음을 바로 이용하는 거죠! (그나저나 기본적인 것을 옮겨둔 거라 몇 고2 분들께 도움이 되었으면 했는데 생각보다 많은 분들이 감사를 표해주셔서 신기하네요 ㅋㅋㅋㅋ 잘 활용해주셔서 저도 정말 감사드립니다! 다들 '스킬'에만 의존하지 말고 왜 그런지 '증명'에도 초점을 두셨으면 좋겠습니다)
와 대박이네요... 근데 선생님 혹시 실전에서 로피탈의 정리 사용해보신 적 있으신가요? 아니면 하나의 극한식을 바라보는 색다른 발상 정도로 여기시나요?
고2 올라가며 처음 수2 배울 땐 썼었는데 고3 되고 수능 수학에 대한 이해도를 키워가는 동안은 로피탈의 정리를 사용하기 전에 확인해야할 조건이 까다롭다 느껴서 자료에 있는 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 극한을 처리했던 것 같습니다. 수2 수준에서 로피탈의 정리랑 연산량은 같은데 확인해야할 조건이 조금 더 직관적이고 교육과정 내라는 점에서 마음이 놓였습니다. (개인적인 생각으로 수2는 '미정계수의 결정'과 '미분계수의 정의'에 익숙한 상태를 만든 후 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 맞이하는 극한들을 처리하는 게 이상적이라 느끼고 미적분은 '0/0꼴 극한에서의 미분계수의 정의 활용'을 사용할 수 없는 분모에 있는 함수의 미분계수가 0인 경우 (lim x->0 [tan(x)-sin(x)]/x^3 같은 거) 등에는 인수분해나 유리화 등을 통해 해결하는 것이 이상적이라 느낍니다. 물론 이 예시의 경우 '테일러 전개'를 활용해 다항함수의 극한 꼴로 해결할 수도 있지만 ㅋㅋㅋㅋ 그건 로피탈의 정리보다 더 한 교육과정 밖 내용이니까요! 근데 말하다보니 대표 함수들의 테일러 전개식을 활용한 함수의 극한 처리에 관한 자료를 만들어보는 것도 재밌을 것 같네요, 미적분에서 삼각함수의 극한 처리할 때 1-cos(x)를 x^2/2로 생각하는 것 같은 거도 사실 테일러 전개식에 기반해 설명하면 직관적으로 받아들일 수 있거든요)
경제학은 위대합니다 ㅎㅎ
선생님 감사합니다. 혹시 미적도 가능하신가요?
자료의 핵심이 '절댓값 함수의 미분가능성', '구간 별 함수의 미분가능성', '곱함수의 미분가능성' 등 직접적으로 교과서에서 소개하진 않는 개념들에 대한 소개와 증명이라고 생각하는데 이는 미적분에도 똑같이 적용되기 때문에 어떤 내용을 다루는 것이 좋을지 잘 떠오르지 않습니다.
자료의 앞부분처럼 간단히 어떤 내용을 다루는지 정리하고 (수열의 극한에 관한 성질, 급수, 초월함수의 그래프와 극한, 초월함수 미분법, 치환/부분적분법, 구분구적법, 2차원 운동 등) 제가 공부할 때 중시했던 점들을 적어두는 건 마찬가지로 자료의 시작을 열기에 좋을 것 같아요.
중후반 내용의 경우 지금으로서는 초월함수의 극한을 다룰 때 sin(x), tan(x), e^x 같은 것들을 테일러 전개로 전개한 식을 테일러 정리, 테일러 급수에 기반해 소개하는 것, (다항함수)*(초월함수) 같은 식 꼴의 그래프를 미분없이 그리는 법 (대표적인 유형 기억), 치환적분법과 부분적분법 같은 것을 연습하기 위한 [sec(x)]^3 따위의 적분 정도가 떠오르는데 혹시 제가 다루었으면 하는 내용이 있을까요?
+첨언하자면 본글의 자료 뒷부분은 한완수 수1/수2 상중하에 기반해 서술했는데 미적분의 경우 제가 아직 하는 공부하지 않은 상태이고 상도 여러번 공부하진 못한 상태라 이번 자료만큼의 퀄리티 혹은 의미는 지니지 못할 것 같기도 합니다 ㅜ 비슷한 느낌으로 미적분도 제작해 올릴 수는 있겠으나 이번 자료만큼 깔끔하게 정리하기에는 제 내공이 부족할 것 같네요
초월함수를 제가 매끄럽게 다루지 못한다..? 라고 해야하나 그런 느낌이 있어서 한 번 질문을 해 보았습니다. 지금 올려주신 자료만으로도 충분히 감사합니다.
초월함수의 그래프를 매끄럽게 다루는 것과 관련해서는 이 영상을 참고하시면 좋을 것 같습니다.
https://youtu.be/xp7OG3xnC4w
감사합니다
수1이나 다른과목도 해주실수 있나요?
개인적으로 실전 개념과 그에 대한 증명을 공부하는 것이 학습에 큰 도움이 되는 경우가 수2와 미적이라 느끼긴 합니다만 고려해보겠습니다.