[칼럼] 문제 포장지 벗기는 방법들
게시글 주소: https://iu.orbi.kr/00057790645
안녕하세요 위런입니다 ㅎㅎ
-재수 서울과기대 -> 독학 오반수 의대 합격
-21수능,22수능 국어 백분위 100
-현역 수학 4등급 -> 22수능 수학 백분위 98
왜 개념을 공부해도 문제가 풀리지 않을까?
여러 이유가 있겠지만 그 중 하나는
고3 이전에 배운 수학으로 문제를 포장해놓기 때문입니다.
23학년도 6평 22번 문제입니다.
무시무시하게 생긴 모양때문에 꽤 유명하죠.
유리화를 떠올리지 못해서 풀이 시작도 못한 경우가 많습니다.
유리화 자체는 중3~고1 즈음에 배우죠.
만약 유리화 한 상태로 문제를 출제했다면
난도가 꽤나 낮아졌을 겁니다.
이와 비슷한 것은 또 있습니다.
22수능 12번 입니다.
저 조건식을 인수분해 하는 게 포인트였습니다.
이 문제도 인수분해 한 상태로 문제를 출제했다면 난도가 내려갔을 겁니다.
'함수의 연속'에서 가장 핵심 개념은 좌극한=함숫값=우극한 입니다.
22수능 12번은 '함수의 연속' 단원에 속하는 기출문제이지만
정작 저 문제를 풀기위해선 함수식 인수분해가 더 중요했습니다.
22학년도 6평 14번입니다.
(가)의 복잡하게 생긴 식을 해석하려면
1. 양변을 x로 나눌 줄 알아야 하고
2. |xf(x-p) + qx| = |x||f(x-p) + q| 라고 절댓값을 분리할 줄 알아야 합니다.
이것 모두 우리가 고3때 배운 것들이 아닙니다.
고3이 되어서 이제 열심히 공부하자!고 결심해서
인강을 듣기 시작하고 수1,수2,선택 과목 개념 열심히 공부했는데
정작 중~고1,2때 배웠던 것들 때문에 문제풀이 시작부터 막히고 있어요.
'어? 고2까지의 수학은 잘 모르는데?'
'고2때까지 문제 거의 안 풀었었는데?'
-> 이게 제 경우입니다.
그래서 수능직접범위 개념들은 아는데 정작 시험보면
점수가 안 나오곤 했었죠.
이거는 어쩔 수 없는게 예전부터 문제 많이 풀었던 사람과
고3 되어서 시작한 사람은 경험량이 너무 차이나기 때문이죠.
그래서 이거의 해결방법은 무엇이냐?
1. 중~고2 까지의 수학을 다시 보고 문제도 풀어보자!
-> 권장하지 않아요.
시간 낭비에요. 지금이 3월이어도 고민할 거 같은데
8월이 되어가는 지금 즈음에 해야 할 행동같진 않아요.
그리고 위에 언급했던 유리화,인수분해,절댓값 쪼개기 등을
우리가 몰랐던 게 아니잖아요?
알고 있는데도 쓰지 못했던 거지요.
2. 기출에 나왔던 방법들을 정리하자!
-> 가장 현실적이면서 가성비 좋은 방식입니다.
그간의 기출문제에서 나왔던 방법들은
앞으로 출제된 가능성이 가장 높기 때문이죠.
여기에 N제와 실모를 최대한 많이 푸시면서
새로운 방법들에 대한 경험을 쌓아가시면 됩니다.
물론 N제와 실모에 나오는 방법은 수능 때
출제될 가능성이 낮으므로 이런 게 있구나 정도로
넘어가시면 되겠습니다.
궁금한 점이 있으시면 댓글이나 쪽지 남겨주세요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
6칸 짜리 하나 넣고 나머지 다 상향 넣을랬는데 막상 6칸 짜리에서 폭이 날까봐...
-
머있음 추천좀
-
모두 굿밤
-
ㄹㅇ 어그로 죄송합니다.. 예비 고2이고 겨울방학때 강민철 문학 들을 예정이예요...
-
근데 의대생들은 본인들이 진짜 억울하게 당한 선량한 피해자라고 생각하는거임?ㅋㅋ 3
국수영탐 시간배분좀요 고2 정시러고 10모 기준 35311임 화작확통영어정법사문
-
결국 미적분 잘 맞을거 같기도 하고 자연계중에 미적/기하 필수인데도 있다해서 그냥...
-
원래 김동욱쌤 들을라고 했는데 공부 못하는 사람 특이긴 한데... 9모 해설 봤는데...
-
이렇게하는거 맞나요?
-
영어에피를 따고싶어요 일단 에피가능한게 토익, 텝스, 토플 같은데 토익은 올해초에...
-
역학만 3개를 봐야 함.. 미쳣네
-
하긴 내가 바라보는 면이 세상의 전부는 아니니...!
-
30분 했다 오늘 공부 끝~~
-
본인: 여기서 최초로 대학 문턱 밟아본 사람임 실제로 집안“어른“중에 최고학력이 상고졸업 아버지임
-
재수할라고 맘 먹었는데 다들 사탐런사탐런 거려서.. 현역때 6모 생지 각각 2, 5...
-
ㅈㄱㄴ... 장학금은 학기중에 들어오는 거 맞나요 그러면 만약에 당장 목돈이...
-
항상 드는 생각이지만 다이어트 시작하면 왜이렇게 귀신같이 유튜브 알고리즘이 먹방으로...
-
아 금테 300명이구나 12
200명인줄 난 수능볼때까지 못달겠네
-
사탐 의대 0
정말 궁금해서 올려봅니다... 내년 2026 입시에서 사탐 의대 가능할거라고...
-
의대생들 입장에선 그게 또 아닌가 현직들한테 듣는 상황은 아직 그리 나쁘지는 않은거 같던데…흠
-
내가 번호 물어보면 다들 죄송합니다 이러는데 어떻게 감사합니다랑 죄송합니다를 뜻을 헷갈릴수가 있지
-
야식 추천 좀 5
야무진 걸로 비싸면 안 됨
-
보카로 듣는걸로 ㅈㄹ하는거 ㅈ같아서 걍 밖에서 jpop 듣고 다닐거임
-
떼잉 쯧
-
뭐 그렇지 않은 사람들도 있겠지만 대부분 1. 기업 CEO / 기업 대표 성공하고...
-
이명학 수능루틴 0
작년거랑 내용 다른가여?? 작년거 써도되나용
-
자극 개쩌네 삼반수각인가
-
과탐 수능 2등급 2등급 국어 3등급 (백분위80)로 마무리지을것 같습니다. 내년에...
-
언매 93 2등급 미적 80 3등급 ?????? 동시에 이럴 확률은????
-
졸리다 졸립다 8
뭐가 맞음
-
빨리 옷 추천해조
-
제발..
-
인증메타는 17
언제쯤 다시 열리나요 대기중 . . .
-
그딴건 없고 제 아내 보고 가세요
-
그래서 오르비언들 볼때마다 참기힘든것 일루와잇
-
강대 크럭스 사볼까 하는데 퀄 어떤가요?!
-
14 20 21 22 틀려서 84 나왔는데 뭐부터 해야 할까요 ㅠ 뉴런?
-
우웅 14
우웅
-
사문 1컷 1
사회문화 1등급 46일까 45일까
-
시즈카 화형식하면 보실분
-
문학/비문학 한문제씩 만든 문제 한번 풀어보실분 있나요 쪽지로 메일 남기시면...
-
건대 전과 쉽나여
-
지역인재로 의대 썼는데 보통 ㅈ반고 전교권들 대상이면 최저 충족률이 어떻게...
-
인류 역사상 최고의 날먹과목
-
2월군번 99점인데 영끌하면 제가 100점정도 될것같은데 진지하게 헌급방 가야하나
-
다들 폰 뭐쓰심 11
저는 아이폰14 일반 작년 3월부터 쓰고있고 26년 초쯤 조카 주고 17로 바꿀듯
-
21살이라 벌써 입시가 2년이나 지난 사람 vs 21살인데 아직 입시에 매여있는...
-
탈퇴 전 무물보 17
육군 군수 투자 (오늘자 시드 4.7억쯤 됨) 기타 등등
이런 이유 때문에 5월즈음인가에 중학개념을 다시 봤었네요.. 무지성 실전개념 했었으면 지금 상황이 안좋았을거란 생각이 드네요
그렇죠. 이전에 잘 다져놓지 못한 기본기가 발목을 잡는 경우가 많아요. 그래도 본인에게 맞게 방향 설정 잘 하셔서 다행이에요.
난 또..제목만 보고 실모 깔끔하게 뜯는 법일줄..요 ㅋㅋ
그럴수도 있겠네요 ㅋㅋㅋㅋ
저도 ㅋㅋ 책 랩핑 뜯는법인줄
좋은 칼럼이다 이거야!
감사합니다 ㅎㅎ
이거 주제로 더 구체적으로 칼럼 써주시면 대박일 듯요 ㅎㅎ 좋은 글 잘 보고 갑니다
이 주제로 앞으로도 여러개 쓰려고 합니다. 감사합니다 ㅎㅎ
좋은 글 감사합니다! 스스로 문제를 풀고 자신에게 부족한 문제의 포인트를 캐치하고 정리하는 과정에서 문제에 대한 전반적인 접근도 좋아질 수 있다는 말씀이실까요? 아직도 접근조차 어떻게 해야 할지 모르는 문제가 있다면 그건 순전히 문풀량 부족 때문이고, 그걸 채우는 공부를 해야 맞을까요?
네. 앞에 물어보신 내용은 맞아요. 뒤에 물어보신 내용은 접근조차 어떻게 해야할지 모르는 문제가 나오면 그 문제도 자신에게 부족한 포인트를 캐치하고 정리하시면서 빈틈을 메꿔나가시면 돼요