2023학년도 사관학교 수학 4점 문항 손해설지
게시글 주소: https://iu.orbi.kr/00057781434
2023학년도 사관학교 수학영역 4점 문항 손해설지.pdf
안녕하세요. 박민후입니다.
7월 30일에 시행된 2023학년도 사관학교 1차 선발시험 4점 문제에 대한 손해설지입니다.
공통 문항만 있으며, 손해설지의 내용 중 궁금한 점이 있다면 말씀해주세요.
파일에는 4점 문항 전부 수록되어있습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
롤체어랴워 0
-
- 세수 폼클렌징 함 - 물리 잘함 - 샤워는 어제 함 - 귀여움
-
쪽지 환영. 댓글도 좋아요.
-
약대좋죠 0
붙고한번도안가보긴했었는데 메디컬끝자락이라도 붙었을땐좋았음
-
ㅇㅈ 2
그것은 어렸을 때였구요~
-
작수 비문학 1개 언매 4개 틀리고 문학 다 맞고 올해 국어 만점인데 국어 칼럼 써볼까
-
남고기준 한 학년에 이름 김범준인 새끼 최소 3명씩은 있음
-
계속 막힌 느낌이 듦. 수능 전에는 이러지 않았는데 하아..
-
나도저격해줘 5
저격당해볼래 나는깔꺼많으니까
-
20듀에서 쵸비만 월즈 없음
-
스트레칭 하세요 0
다리 부종이 심하실겁니다 유튜브에 골반스트레칭 검색해서 30분정도 되는 거 하세요
-
뉴비는 저격이 당해보고싶어요
-
맛있네요
-
김범준 기대되네 4
저렇게 호평일색인데 한완수 하고 있던 나도 궁금해짐 기말끝나면 스블 나와있겠네 근데...
-
내 사진 하나도 없네
-
너무 잼있어요 이래서 수능끝난 오르비가 찐이구낭
-
보통 성적표 인증할때 과목 백분위 표점을 다 가리진 않음 2
인터넷에 돌아다니는 성적표일때 보통 그럼 보통 ㅇㅇ
-
ㄹㅇ포스뭐임
-
성대 가능한가요 3
공학계열 자연과학계열 전기전자 자유전공 가능한데 있을까요
-
지구고수분들 0
이거 ㄷ 판단하는거 이해가 안됨 내가 모르는 공식이 있는거임?
-
은은하게 계속 심장통증이 있어요 뭔가 속상하면 더 심해지고요 심장이 계속 뭐에...
-
안녕하시기
-
외대 논술 0
기출이 1년당 4개던데 2025 모의, 2024 계속 반복 or 2023까지는...
-
형은 888484야
-
화작 98점 4
언매제외 큐브답변 ㄱㄴ?
-
고2 노베였던 남학생 내신 1학기 1등 (1등급) / 2학기 3등 (2등급) 고3...
-
팔리고 안 팔리고는 나중 문제고 자기가 팔겠다는데 뭔 상관
-
메디컬이나 인서울탑급아님 그냥 아주대인하대라인 공대나 상경대 25살까지 이룬거 군필 하루2갑흡연
-
텔레그램 오류 0
이거 가끔 저만 접속 오류 뜨나요??;; 접속이 됐다 안됐다 계속 ‘연결중’만뜨는데...
-
이게말이나되는건가 100도아닌데과외를한다고?
-
사실 백분위 100이야
-
너무 많아서 0
다음 인증으로 유기 ..
-
. 2
이상한 사람이 많다 자야겠구먼 굿나잇 ㅎㅎ
-
미칠 것 같아
-
헤겔 서양 철학 브레턴우즈 경제 얘네 둘은 걍 밴먹은거임?? 22수능 이후로...
-
부모님이 대치에 정시 컨설팅 미리 신청해놓은게 있는데 신청한 컨설턴트 이름에...
-
날조라네..이래서 선동이 무섭다고 하는거구만
-
수능끝나고 입시 전쟁이 이제 시작되겠죠 저는 현역으로 대학을 가려합니다. 그래서...
-
안자는 사람 9
손한번만...
-
오르비에 사문 50이라고 칼럼 찍찍 쓰더니 까보니 50점이 아니여가지고 탈릅했던...
-
15000원?배달비까지ㅇㅇ 밤이나새벽에..
-
오티는 내 반수를 망하게 할 뻔한 1타강사 저격입니다
-
이름 성별 학교 안까이고 성적인증 할 수 있는 방법이 필요하다. 4
오르비에서 중개해서 성적표 확인 뱃지 시스템 하나 만들어주면 안되나 특정과목 1등급 뱃지 이런거
-
이번시험 현역이나 2-3등급인 분들에게는 1719제외해도 브레이크 걸릴만한 부분들이...
-
뭐 학벌빼고 통합수학 미적88로 숨고 과외가 잡힘?
-
1~2교시 수1 3~4교시 수2 5~7교시 확통 여름방학때 정시로 돌리고 이렇게...
-
강의합니다 10
월 1000만원입니다
넵 ㅎㅎ
와 이런 정교한 해설지 원했는데
공부에 도움이 되길 바랍니다 ㅎㅎ
QCC로 알게 되었는데 오르비 활동도 하시는군요 팔로우 눌렀습니다. 도움 많이 받고 있어요
공부에 도움이 되었다니 기쁩니다 ㅎㅎ
15번에서 부등호 나누신 것은 어떻게 하신건가요? 저는 그래프 보고 일일이 찾아봤는데,,, 궁금합니다!
식은 2acos(b/2)x를 (a-2)(b-2)만큼 내리고 절댓값을 씌운 형태입니다.
(a-2)(b-2)가 2a 이상이거나 -2a 이하라면 그래프 개형이 꺾이지 않을 것이고, 그 사이라면 그래프가 꺾일 것입니다.
이에 따라 f(x)와 2a-1 의 관계 양상이 달라지므로, 저렇게 케이스를 나눈 것입니다.
14번 ㄷ 에 어떻게 g`(b+) g`(b-)가 각각 다르게 나오나요??
g(x)는 x=1을 제외한 나머지 구간에서는 확실히 미분가능합니다. 따라서 ㄷ에서 b가 1이 아니라면, 좌미계와 우미계가 같으므로 둘의 차는 0이 나와야 합니다.
하지만 우미계 - 좌미계 = 4라고 나와 있으므로, b=1이어야 합니다. x=1에서 g(x)가 첨점을 갖는다면 좌미계와 우미계가 다를 수 있는 가능성이 있으니까요.
감사합니다
아 그런데 왜 앞에 부분이 우가 되고 뒷부분이이 좌가 되나요??
h->0+이기 때문입니다