[2014.9] 21번 심층분석
게시글 주소: https://iu.orbi.kr/0003822451
작년 9월때도 http://orbi.kr/0003054370 이런글을 올린적이 있는데
올해도 비슷하게 "대충 풀어도 맞을 수 있지만" "완전히 논리적으로 풀기는 어려운" 문제가 나왔네요.
마지막에 음영으로 된 문제와 똑같다는 것을 깨닫는 것을 목표로 읽어주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
후방주의 3
히히
-
뭔 일 있었나요 8
-
후방주의) 1
비켜주세요~
-
혹시 내가 정말 제대로 썼다 하시는 분 많을까요 ㅠㅠ 진짜 잘쓴거같은데 경쟁률이...
-
다들 어디 간고야
-
후방주의 5
-
배 터지겠다
-
사탐으로 인설의 뚫린다길래
-
여캐일러 투척 6
-
ㅜㅜㅜ ㄹㅇ
-
"킹 와퍼" 와퍼는 아주 유명한 버거 goat임 그리고 추측이지만 몸에도 좋음 ㅇㅇ...
-
예견된 과학탐구 백분위 몰락, 원인 분석과 올해 입시의 전략 수립 4
안녕하세요. 피오르에듀의 메디컬 팀장 종냥입니다. 이번 칼럼의 주제는 과학탐구...
-
자기 성대 대학원 갈거라고 계속 성글경제 쓰라네
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
‼️고려대학교 25학번 아기 호랑이 여러분 주목‼️ 0
안녕하세요, 고려대학교 재학생 대표 커뮤니티 고파스의 새내기 맞이단입니다!!...
-
수학 강사 질문 0
기하 선택이고 윤구쌤만 믿고 듣다가 너무 인강만 보고 스스로 문제를 안풀어서.....
-
거의 문학 소설가 급으로 내용 지어 쓰는데 재밌으면서도 4주간의 상상 일기를 쓰려니 귀찮음
-
새삼 자식이 재수할때도 삼수할때도 사수할때도 그냥 응원만 해준 부모님께...
-
성적표 나올때까지...
-
오지훈vs이훈식 1
지구과학 인강 추천좀 상위권 기준으로 추천 부탁드립니다
-
기상 5
-
고2)올해 수능 100점/70분 기준 실전개념 커리큘럼 1
실전개념을 제대로 복습할 수 있는 시간이 겨울방학밖에 없고, 아무리 수능준비를 오래...
-
꿈꿀 때랑 깨어나서 현실을 인지했을 때 둘다 ㅈ같음
-
시이나 8
-
삼차방정식의 근과 계수의 관계 쓰면 미분 안 하고도 나오는데 그거 엄밀히 교과외 아님?
-
가망 없겠죠? ㅠㅠㅠ
-
잇올 뭐지 4
잇올 나 혼자 쓰고있는데도 재입실이 안된다고 하네 융퉁성 뭐지 그러면 히터 꺼달라고...
-
텐시사마 4
-
얼버기 3
공부 시작!
-
부모가 자식보고 "잘못됐다"라고 말한거 부터가 문제라고 생각해요 2
콩심은데 콩나지 팥나겠노 아무리봐도 내 자식 아닌거 같으면 친자검사 ㄱㄱ
-
1컷 숨막힘뇨 ㅋㅋ 병호 인스타가 최저?컷이라 실제로 70점대는 잘 안나오고...
-
샹윤 시문 경제 정법
-
일찍 자야겠다 7
새벽에 제일 우울한듯
-
교재비 포함 20전후로 생각하면 되나요??
-
메가대로만 나와도 소원이 없겠다... 71 70 이야기가 왤케 많냐 ㅜ
-
기출은 거기서거기 맞나요 원솔멀텍 vs 기출생각집 vs 수분감 너무 고민되어서요
-
언매 85 (61+24) 확통 63 (47+16) 최저 때문에 피가 말라요
-
빅괴군 보고가 2
OUT
-
오늘의 우리를 기록해 어제의 우리를 위로해 내일의 걱정은 뒤로해
-
원인있음의사난수 원인없음진성난수 제1원인은->원인없음 제1원인은->진성난수...
-
3,4등급 애들은 재수 어디서 함? 시대 강대 미만 다 비슷함? 3,4등급 재종기숙 추천좀
-
페북느낌난다
-
오디다가 하시나용
-
'현장감' 이 차이가 정말 큼 화작은 아무리 어려워도 공부가 잘돼있다면 시험장에서도...
-
부산대 인문논술 0
부산대 인문논술 3-2 소문항 한개 못적었으면 무조건 탈락인건가요? 앞에껀...
-
https://naver.me/GpC6rq15 이지랄 ㅋㅋㅋㅋㅋㅋㅋ
-
대 리 런 7
약코 GOAT
굳 저 연대가면 싸인해줘여 내친구 성광고나왔는뎁
맞긴맞았는데 난만한님께서 써주신 풀이대로 생각하는 능력을 기를려면 한완수 미분에서 어디부분을 하는게나을까요??
깔끔하고 좋다..
이런건 어떻게 혼자 알아내시나요?ㅠ
잘 봤습니다. 근데 좀 의문인게 있네요.
도함수를 그리는것이 수능의 본질이라고 하셨는데.
문제가 쉽게 출제되서 그렇지, 삼각함수가 껴있으면 보통 학생들은 그리기 힘들텐데요...
오히려 f'(x)를 그리기 보다 매개변수 미분을 분석하는것이 좀더 옳은 방법이라고 생각합니다.
이차함수랑 lnx가 포한된 함수랑 유사한 경향을 띈다고 하셨는데... 이게 교과서적인 발상인가요?
오리혀 문제가 난이도를 낮추려다 보니 함수f(x) 가 되는거지
일반 곡선일 경우 저러한 접근은 상당히 위험합니다.
매개변수 미분법을 개념적으로 좀더 접근하는것이 수능답다고 생각하는바입니다.
이미 6월 모의고사 30번에도 일반곡선이 등장했고, 충분히 매개변수랑 엮을 수 있습니다.
이상입니다.
연대수학과 영우알아연?
전 보자마자 세번째로 풀어서 21번의 포스를 전혀 못느꼈는데 저런 철학이 있었군요
각주 1번 두개중에 아래1번 이해가 안가구요.
6번에서 e^t이거를 도함수에서 고려안하는건 당연히 지수함수는 항상 0보다 크니까 증감파악할때 필요업ㅅ어서 고려안하는건데 증가함수이기 때문에 개형이 유사할것이다 라고 말한거랑 왜 수학적으로 동등한지 모르겠어요.
6번 밑에 사실은 하ㅂ성함수의 미분이기도 하고..란말도 이해가 안가구요.ㅠ
알려주세요! 난만한님
예시에 x=e^t+e^-t이면 힘들다고 하셨는데, 그렇게 하면 y가 x에 관한 함수가 아니지 않나요??