[규토] 6월 수학 총평과 실전 손풀이 해설지
게시글 주소: https://iu.orbi.kr/00037866813
2022학년도 고3 6월 모의고사 수학 (해설지)(made by 규토)(6.9) (1).pdf
미적30번 계산실수가 있어 다시 수정하여 업로드하였습니다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
(라이트 미적분 최종검토본을 제출한다고 어제 좀 무리했더니 위염과 몸살까지 겹쳐서
죽다 살아났습니다;;)
방금 모두 풀어보았습니다 ㅠ 늦게 올려서 죄송합니다.
<공통>
10번 : 직접적으로 방정식을 푸는 것이 아니라 x=1과 x=2를 넣었을때 함숫값의 크기를
비교하여 부등식으로 처리하는 문제였습니다.
참고문항) 2014학년도 6월 평가원 A형 20번/ 2016학년도 6월 모의평가 B형 18번
2022 규토 라이트 N제 수1 p107 62번
11번 : 나름 고전이라고 할 수 있는 문제입니다. 실전에서는 조건을 만족시키는 f(x)를 간략하게 그리고
g(x)를 그리셔서 판단하면 쉽게 해결가능합니다.
참고문항) 2022 규토 라이트 N제 수2 p255 40번,41번
/ p307 58번, / p309 65번, 67번, p312 75번
12번: 코사인법칙을 묻는 문제였습니다. 선분 AD를 찾을때 이등변삼각형을 이용하여 수선의 발을 내려 구하면
쉽게 구할 수 있었습니다. 그 후 선분 DC의 길이가 4인 것을 바탕으로 다시 삼각형 BCD가 이등변삼각형이라는
것을 파악한 뒤 수선의 발을 내려 구해주면 되었습니다.
확실히 작년 수능보다는 사인코사인법칙에 대한 난이도가 올라갔다고 봐야할 것 같습니다.
(난이도가 어느정도 있는 사인코사인법칙 문제는 고득점 N제에서 확인가능합니다.)
참고문항) 2022 규토 라이트 N제 수1 p237 38번/ p230 11번/ p241 53번
13번: f(x)를 그린후 그냥 집어 넣기만 하면 되는 문제였습니다. 다만 루트 k에 초점을 맞추어
k가 제곱수가 되는 것이 포인트인 문제였습니다.
참고문항) 2022 규토 라이트 N제 수1 p331 31번 / p332 31번
14번: 아마 당황한 학생들이 많을 것 같습니다. 평가원이 자주 쓰는 포장의 기술이 듬뿍들어간 문제가 되겠습니다.
g(x)를 한번에 주지 않고 g(x)를 구할 수 있는지 물어보았습니다.
lxl를 빼내고 x가 양수인지 음수인지 case분류하여 g(x)를 다시 설정해야하는 문제였습니다.
이때, 실수 전체의 집합에서 연속 조건을 이용하면 g(0)=0이 되어야 함을 끌어낼 수 있었습니다.
해설지처럼 -1+p의 범위에 따라 case분류하거나 아니면 정답은 항상 특수한 경우이니 -1+p=0 부터
접근하셔도 좋습니다. 그 후에는 손쉽게 구할 수 있었습니다.
결국은 g(X)의 그래프를 그릴 수 있는 것이 가장 중요한 문제였습니다.
참고문항) 2022 규토 라이트 N제 수2 p225 209번, 210번/p226 216번 /
2021 규토 고득점 N제 수2영역 21번
https://youtu.be/eb41YujBqXE?t=7324
(위 문제에 대한 해설강의는 2시간 2분 4초 부분부터 보시면됩니다.)
15번 : 알파(t)와 베타(t)의 정의가 무엇인지 확실히 이해하는게 중요한 문제였습니다.
sin과 cos그래프를 그려놓고 y=t를 그어가며 판단하는 문제입니다.
라이트 N제에서 삼각함수그래프는 대칭성이 매우 중요하다고 강조했었는데
이문제에서도 대칭성이 듬뿍 나오는 것을 확인 하실 수 있습니다.
ㄴ에서 사인과 코사인그래프는 사실상 평행이동 관계라는 것을 파악하면
쉽게 판단가능하였습니다.
ㄷ에서는 방정식을 활용하고 sin^2x +cos^2 x=1 라는 관계를 이용하면 되었습니다.
문제 비쥬얼에서오는 심리적인 부분이 크게 작용했을 것이라 생각합니다.
참고문항) 2022 규토 라이트 N제 수1 p210 85번/ p211 87번, 89번
20번 : 작년 수능 나형 20번 문제와 매우 흡수한 문제였습니다.
(아마도 지진대비 스페어 문제가 아닐까 의심해봅니다)
적분변수가 t이므로 f(x)는 상수와 같으니 앞으로 빼서 미분하셔야합니다.
(라이트 N제에서 매우 강조한 부분)
f(t)^4을 준것을 보고 이건 그리라고 한 것이아니라 f(t)^4 >=0이라는 것을 알려주는
식인 것을 알 수 있었습니다.
그 후 라이트 N제에서 수없이 연습했던 New함수 테크닉으로 처리해주면 쉽게 구할 수 있었습니다.
참고문항) 2022 규토 라이트 N제 수2 p265 93번/ p266 98번/ p272 112번
21번 : 아마 문제를 보고 미분문제인지 알았던 학생도 상당수 있었을 것 같습니다. (포장의 기술)
지수로그 를 물어본 문제였는데 (나) 조건을 통해 f(x)는 서로 다른 두 실근을 갖는
다는 것을 알 수 있었습니다.
(가) 조건을 만족하려면 n은 짝수 이어야 하고 정의에 의해서 두 실근이 각각 n제곱근64, -n제곱근64인
것을 파악할 수 있었습니다. 그 후 나 조건의 정수 조건을 이용하는 문제였습니다.
역시 평가원이라는 말이 어울리는 문제였고 상당히 세련되게 문제가 뽑힌 것 같은 느낌을 받았습니다.
매번강조하지만 그냥 한번 해본다는 마인드는 문제를 풀 수 있는 가장 강력한 툴이니
꼭 기억하셨으면 좋겠습니다.
참고문항) 2022 규토 라이트 N제 수1 p46 21번/ p49 43번 /p75 41번,44번, p76 48번/ p78 50번,51번, 52번
22번 : 요번 6평에서 가장 난이도가 높은 문제였습니다. (정답률 2%)
(가) 에서 하나 실근과 중근을 갖는다. (나) 조건에서 최고차항의 계수가 음수이다 를 알려주었습니다.
(나) 조건을 해석할때 방정식으로 접근하는 법은 라이트 N제에 많이 다루었습니다.
f(1)=4, f'(1)=1, f'(0)>1 조건을 이용하여 f(x) 를 추론 한뒤 식세우기 테크닉으로
처리하는 문제였습니다.
이러한 문제는 단순 기출문제 뿐만아니라 여러가지 다양한 문제들을 접해보고
문제에 대한 적응력이
높아져야 풀 수 있는 문제입니다. 따라서 개념강의만 보았거나 기출문제만 학습한
학생들은 못푸는게 당연하니 너무 상심하지 마셨으면 합니다.
참고문항) 2022 규토 라이트 N제 수2 p220 193번, p226 213번, 215번/ p227 218번
<확통>
28번 : 전형적인 case분류 문제입니다. 점수는 크게 1111/ 1120/ 1300 / 2200 로 분류할 수 있었습니다.
조심해야 하는 점은 00을 두개 가졌을 때, 45 46 56 44 55 66 이렇게 다시 분류할 수 있다는 점입니다.
무턱대고 00을 서로 같은 것으로 보시면 안됩니다.
참고문항) 2022 규토 라이트 N제 확통 p64 19번 22번 /p121 23번/ p136 75번 / p130 60번
29번 : 곱이 12가 되지 않도록 은 26 과 34가 이웃하지 x 와 같은 뜻이었습니다.( 포장의 기술)
여러 방법이 가능하지만 2번을 고정시키고 나서 6번의 위치에 따라 case분류하면 쉽게 구할 수 있었습니다.
3,4 가 이웃하지 않아야 하므로 전체 경우에서 이웃하는 경우를 빼주면 쉽게 구할 수 있었습니다.
참고문항) 2022 규토 라이트 N제 확통 p62 4번, 6번, 7번, 8번/ p73 56번,58번 / p74 60번
p75 65번 / p78 80번
30번: 전체의 경우에서 6의 배수가 나오지 않을 확률을 빼서 구할 수 있었습니다. (여사건의 확률)
6의 배수가 나오지 않으려면 1 2 만 1,3 만 1만 2만 3만 이루어져 있어야 하므로 각각 case분류하여
구하면 되었습니다. 조심해야할 부분은 1 2만에서 몰빵 1과 몰빵 2를 빼줘야해서 2^5-2=30 가지가 나온다는
것입니다.
참고문항) 2022 규토 라이트 N제 확통 p62 28번, 29번 30번/ p132 69번 / p137 79번
-> 확통은 라이트 N제 확통으로 충분히 대비가 가능하였습니다.
수1 수2에 비해 t1난이도가 높기때문에 연습하기 좋습니다.
위 문항과 비슷한 문항 모두 라이트 N제에서 확인 하실 수 있습니다.
<미적분>
26번 : 단순히 중학교 도형에서 벗어나 삼각함수 덧셈정리를 이용한 문제였습니다.
참고문항) 2022 규토 라이트 N제 미적분 p116 84번 (2021수능 가형), p118 89번(2021 6월 가형)
-> 2022 규토 라이트 N제 미적분 급수 파트 전체 (모두 풀어봐야함)
28번 : 각의 이등분선과 비례관계를 이용한 문제였습니다.
식을 세우는 과정은 크게 어렵지 않았던 것 같지만 계산과정이 좀 복잡하여 실수를 유발할 수 있었습니다.
참고문항) 2022 규토 라이트 N제 미적분 p173 129번(2010 6월 가형)/ p175 137번(2019수능 가형)
p177 144번(2020 9월 가형)
-> 2022 규토 라이트 N제 미적분 삼각함수 도형극한 파트 전체 (모두 풀어봐야함)
29번 : 합성함수 미분법 문제인데 g(t)에 관련된 식을 세워 미분해주면 손쉽게 구할 수 있었습니다.
참고문항) p222 90번, 91번(2016 수능 B형) /p250 17번/ p264 90번(2020 6월 가형)
30번 : 정답률 7%
x= -t를 대입하면 함숫값이 0 이고 , y'>0 (증가함수) y''>0(아래로 볼록)인 것을 바탕으로 대략적인 그래프를 그린 뒤
t>1/2 ln2 조건을 통해서 x= -t의 접선의 기울기가 1보다 작다는 것을 파악할 수 있었습니다..
여기서 중요한데 f(t)를 t로 표현하여 f '(ln2)를 구하기 어려우니 징검 다리처럼 다른 문자의 도움을
받아서 구하면 된다. 원점이 아닌 다른 교점의 x좌표를 a라 두고 식을 전개하면 되었습니다..
이때, 직선 y=x+t 를 준이유가 등장하는데 식의 깔끔함을 위해서 기울기로 1로 주어
점과 점사이의 공식을 유도하기 보다는 1 :1 :루트2 비례식을 이용하여
루트2(a+t)=f(t)라는 식을 끌어내는 것을 유도한 것으로 보입니다.
그 후 t=ln2일때, da/dt 와 a를 구한 뒤 식에 대입하면 답을 구할 수 있었습니다.
참고문항) 2022 규토 라이트 N제 미적분 p222 89번 / p250 16번 / p263 86번(2019년 7월 가형)
p269 105번(2020 수능 가형)
<기하>
28번 : 문제를 잘봐야한다! 아마 아무리해도 답이 안나온 학생들이 있었을 것 같은데
원이 타원의 서로 다른 두 꼭짓점을 지난다고 하였다. 한 꼭짓점이 아니라 두 꼭짓점을 지난다는 것을
파악하면 일사천리로 식을 전개할 수 있었습니다.
29번 : 평행이동했을 때 길이가 완벽하게 보존되는 이유는 x축으로 2a y축으로 a만큼 이동했기 때문이다.
그렇기때문에 기울기가 2인 직선과 딱 맞아 떨어지는 것입니다.
참고) 2022 규토 라이트 N제 수1 p71 41번 해설참고
30번 : 23~29번까지는 무난한 느낌이었다가 갑자기 확 어려워지는 느낌이었습니다.
(가) 조건에서 PQ벡터와 AB 또는 AD와 수직이라는 것을 파악할 수 있었고
(나) 조건과 (다) 조건은 지난 기출문제들에서 다수 보았던 표현이기에 쉽게 처리할 수 있었습니다.
조심해야할 점은 P와 Q의 거리가 2루트2 일 수도 있고 , 거리가 2루트2가 아닐 수도 있다는 점입니다.
따라서 case분류하여 접근해야합니다.
중점 분해를 사용하여 P와 Q의 거리가 2루트2일때 최솟값과 최댓값을 구하면
m=16 M=32이 나오고 거리가 2루트2가 아닐때 (p(2,0)일때, m=20 M=32, Q(2,0)일때, m-16, M=20)
이므로 최종적으로 최솟값은 16 최댓값은 32가 나와 답은 48이 됩니다.
30번 같은 유형들을 대비하려면 평면벡터 기출을 모두 풀어보시고 추후에 기하 N제를 통해서
다양한 문제들을 접한 뒤 문제 해결력을 높이시기 바랍니다.
<총평>
현재 1컷이 확통 88 미적분 82 기하 85 인 것으로보아
확실히 결코 쉽지 않았다고 생각합니다.
6평은 이때까지 기출의 역사를 볼때
평가원이 뭔가 새로운 것을 많이 시도해 보려는 모의고사입니다.
다수 문제들에서 뭔가 맨날 봐왔던 패턴이 아니라
문제 뼈대는 같지만 겉 표면을 포장하려고 노력했다는 느낌을 많이 받았습니다.
즉, 특히 문제자체가 어렵다기 보는 포장의 기술을 사용하여
초반 접근을 하기가 어렵게 만든 부분이 많이 보였습니다.
수능에서 적중은 사실상 불가능합니다. 어차피 수능에서도 새로운 문제가 나오겠죠.
이러한 부분을 해결하기 위해서는 본질적인 문제해결력과 사고력을 높여야합니다.
치열하게 고민해보시고 반복체화가 필요합니다.
6평은 전범위도 아니고 이번 시험에서 높은 점수를 맞으려면
최소한 어려운 N제까지 확실히 체화해서 문제에 대한 적응력을 높인 후 응시했어야 하니
너무 스트레스 받지는 않으셨으면 좋겠습니다.
9평을 목표로 학습해봅시다! 어차피 수미잡이니까요 ㅎㅎ
사람마다 자기 페이스가 있습니다.
남들이 뭐한다고 따라서 하지마시고 자기 상태를 냉철히 분석하여
이에 맞는 학습을 하시기 바랍니다.
단순히 문제나 강의만 보면 뭔가 질적성장이 될 것 같지만 사실 그렇지 않고
사상누각이 될 가능성이 높습니다.
치열하게 고민하시고 반복체화가 반드시 필요합니다.
화이팅입니다 여러분!
ps ) 규토 라이트 N제 미적분 현재 예판 시작했습니다 :D
솔직하게 6평 미적분영역은 라이트 N제만으로
충분히 대비가 가능하였다고 생각합니다.
사실 쉬워서 라이트가 아닙니다.
수학에 대한부담을 줄여준다는 의미에서
라이트라고 봐주세요ㅋ.ㅋ
구매하시려면 위 그림 클릭!
규토 라이트 N제 미적분 책소개 (ver.2022)
게시글 주소: https://orbi.kr/00037867672
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
김상훈씨 문학론이 좋다길래 들어보고 싶은데 집에 25올오카 오리진 문학 있어서 얘네...
-
의대 뜨거운 합격 ㅇㅈ 19
ㅈㄴ 불같네.... 빨간색은 너무한거 아인교 ㅜㅜ (사실 면접 안 봄 ㅎ)
-
일반고치곤 ㅅㅌㅊ였음 내신 1-3등: 설대 설대 연대 모고 1-3등: 설대 카이...
-
의전은 성인때 저지른 입시비리인데 당사자도 위법 아님?
-
설대식 400인데 검정고시라 대략 397이라하면 쓸데가 여기만있는데 둘중 어디가 나을까여??
-
윤석열로 한번조지고 이재명으로 한번더 10년동안 조져야 투표의식이올라와서 나라가 정상화된다고...?
-
장단점이 있지만 아무래도 대학입장에서는 지역인재를 선호할수밖에 없음 공정성 공정성...
-
미소녀로 다시 태어나 있을 테니까!!!
-
병무용진단서 의무기록지 값 지원해주는구나 병무청덕분에 교재 사겠네 ㅅㅅㅅ
-
국어 피지컬 오르나요? 10
1년 동안 하루 5지문 이상 날마다 읽는다고 했을 때 피지컬(이해하는 속도, 단기 기억력) 느나요?
-
처음부터 정시갈 생각으로 내신 공부는 아예 안하고, 전날에 시험 범위 아는 정도로...
-
고속 메디컬 0
고속 약대 다른곳보다 후한편인가요? 텔그가 너무 짠것같기도하고ㅠㅠ
-
과탐런하고싶네요…
-
한국지리 장점 2
라디오나 어른들 말씀하시거나 친구들 여행갈 때 언급되는 도시 거의 다 알고있어서...
-
주말에 친구들이랑 가야지
-
작년에 중경외시 라인 마지막날 5칸짜리 예비1떨,, 3
친구가 말해줌ㅋㅋ 존나 무섭다
-
붕어빵의 계절이네요 21
집앞에 개당 500원에 팔더라구요 어흑흑
-
지구1 뉴비 기출 1주일에서 2주일 사이에 끝내려면 2
하루에 몇시간 정도 잡으면 되나요? 오지훈쌤기출교제로 풀려는데
-
개인적으로 강의실 빌려서 물리학1 고퀄 자료 제공 해주고 (전부 자작) 1년...
-
슬픕니다 0
언미 생지 31232 83 97 85 81 91 고대논술 아니면 답이없다 ㅠㅠ
-
670넘어가나
-
내가 바라는 22개정교육과정 >> 모든 과목에 EBS연계 삭제 1교시 국어(문이과...
-
건국대 의대 최초합!! 16
의뱃 받으러 가즈아!!!!!
-
수학 상,하 ㅈㄴ중요한거 맞음. 판별식,이차함수에대한 이해는 말할것도없이 중요하고...
-
기 받고 싶은데 왜 조발 안함;;
-
2411 2506이다 그저 웃지요
-
조발. 0
당장.
-
공기업to 가장 많은편인 학과같은데 워라밸챙기면서 돈 적당히버는게목표면 ㄱㅊ지않음?...
-
과기원 서성한 6
한양대 화공 성균관대 공학계열 유니스트 디지스트 이렇게 중에 고민해 봐야할 거...
-
물지 vs 생지 3
물리랑 생명 중에 뭐할까여 만점 목표인거생각하면 물리인데 표본이나 그런거생각하면...
-
영어적평이후 3번째로 어려운거 아닌가용
-
아시는분 있나? 아 아슬아슬하게 부족하네 10퍼 할인되면 사는건데
-
ㅠ
-
6.22인데 체감은 훨씬 적은 느낌인데 의치한약수 다보고 있는데 영어 2가 너무 많음
-
상경 경영인데 다들 합격컷 몇으로 보고 있음?? ㅎ ㅏ 논술 정보 잘 아는 분... plz
-
건대 4칸 1
희망 가져봐도 되나요 제발 건대 가고싶어요..ㅠㅠㅠ
-
감사합니다 평생 지역의료를위해 뼈빠지게 노력하겠습니다
-
자퇴상담하다 꼽 ㅈㄴ 먹었는디
-
한양대 정문에서 과잠을 입고 춤출수있다
-
가군 6칸 가고 싶던 대학 나군 5칸 꿈의 대학 다군 8칸 대학 어때요
-
당신의 선택은? 다만 이과 머리로는 개병신임 물리 존나 못함 컴공이 1도 안맞아서...
-
절대 안되겠지…기차타고 가서라도 듣고 싶었는데
-
남자 기준이예요 헬스해서 체지방량 감량하면 얼굴살 빠지나요? 벌크업아니고요...
-
계속 슬금슬금 뒤로 밀리는거 머지.. 나정도면 안정권이라 생각했는데 연경은 1배수도...
-
뭔가 영어로 되어있는 학과면 입결 오름
-
사문 어려워요? 5
생명 가계도 같은 거 ㅈㄴ 어려운 거 아니면 시간 좀 걸려도 스스로 풀 수는...
-
그래도 라이브러리랑 수업은 무료로 해주더라
-
이렇게3대장맞나?
-
200은 기본이네요
오타가 있을까요?
검토 진짜 빡세게 했는데 사람일이라는게 혹시 모르니 있어도 아주 소수일 겁니다 ㅎ
선생님.
혹시 라이트 기하는 고득점 N제 시리즈 후에 예정이라고 하셨는데
말씀하신 대로 수1,수2 구매자 기준 pdf로 배포될 가능성이 높겠죠??
그렇다면 꼭 아톰에서 구매한 사람만 가능한건가요??
아니면 또 다른 인증 절차를 통해서도 가능한걸까요??
어디서 구매하신지는 상관없고 올해 규토 N제 책을 구매하신 분에 한에서만 제공해드릴예정입니다.(만약 전자책으로도 출시못할정도로 추후에 나올경우)
이번 무등비를 덧셈정리로도 풀수 있나요??
넵~ 저는뎃셈정리로 풀었습니다
오 한번 해볼게요 ㄱㅅㄱㅅ