다 들어와라. 초초고퀄 자료 왔다. [재업]
게시글 주소: https://iu.orbi.kr/00036988047
삼각함수의 활용 기출 주요문항 문제지.pdf
도형 문제 요점정리+주요 기출문항 해설 by MENTOR.pdf
파일 수정사항이 있어 재업로드합니다
안녕하세요 MENTOR 박지민입니다!
오늘은 많은 학생분들이 도형 때문에 고생하시는 거 같아 도형 학습에 도움이 될 만한 자료를 들고 왔습니다. 글을 쭉 읽어주시고 복습용으로 첨부된 자료를 활용하시면 좋을 것이라 생각합니다!!
첨부되어 있는 자료는 작년 평가원/교육청 도형 문제 11문항과 주멘 모의고사 1, 2회에 나왔던 도형 문제 2문항, 총 13문항의 문제지와, 도형 문제의 요점 정리+13문항의 손해설 파일입니다. 1주일간 정말 혼을 갈았고, 분명 여러분의 학습에 도움이 될 만한 자료라 자부합니다!!
도형 문제를 풀 때, 가장 중요한 것은 "설계"입니다. 사람들마다 생각하는 설계의 개념과 정도가 다를 것 같은데, 저는 "주어진 조건(혹은 도형)을 어떻게 활용할지 고민해 보는 것"이라고 생각합니다. 다른 문제도 무작정 푸는 게 좋은 습관이 아니지만, 도형 문제는 더더욱 풀이 전에 설계 과정이 필요합니다. 거창한 게 아니라,
외접원의 넓이가 나왔네? ⇒ 반지름 알 수 있으니까 사인법칙 써 볼 수도 있겠다.
삼각형인데 각은 모르고 변 길이만 다 아네? ⇒ 코사인법칙 써서 원하는 각을 얻을 수 있겠다.
삼각형 넓이? ⇒ 밑변, 높이는 모르겠는데, 두 변 길이 아니까 사잇각 이용해서 공식을 써볼까?
정도의 생각을 한 후 문제 풀이에 들어가는 것입니다. 처음의 예상과 당연히 다를 수 있죠. 하지만 이 사고를 하는 것과 하지 않는 것의 차이는 천지 차이입니다. 무조건 설계!!!!!!!
주된 내용은 첨부된 파일에 있지만, 확정된 삼각형에 대한 이야기를 조금 해보겠습니다. 삼각형에는 변 길이 정보 3개, 각에 대한 정보 3개, 총 6개의 정보가 있는데, 이 중 아무거나 3개를 알면 (각 3개 제외) 나머지 3개의 정보를 모두 구할 수 있습니다. 저는 이렇게 세팅된 삼각형을 확정된 삼각형이라고 부르는데, 도형 문제를 풀 때 확정된 삼각형을 찾는 것이 아주아주 좋은 습관이 될 것입니다.
직접 모든 길이를 다 구하면서 가지 않아도 "저 삼각형의 정보는 나중에 필요할 때 계산하면 돼~"라고 생각하고 넘어갈 수 있는데, 사소해 보일 수 있지만 절대 사소하지 않습니다. 이 태도는 문제를 풀 때 내가 알 수 있는 확정된 정보를 파악하기 아주 수월하게 해주고 불필요한 계산을 최소화할 수 있게 해줍니다. 여러분에게 도움이 되는 태도라고 자부하니 연습해보시면 좋을 것이라 생각합니다!!
첨부해 둔 파일에 설계할 때 어떤 걸 생각해야 하는지, 도형 문제에서 내가 할 수 있는 행동은 무엇이고 어떤 상황에서 생각해야 하는지 정리해 두었습니다! 그리고 13문항 해설지에서 제가 실제 문제를 풀 때 어떤 설계를 하고, 어떤 흐름으로 풀었는지 적어두었으니 쭉 읽어보면서 학습하시면 좋을 것 같습니다!!!
도형 문제에 대한 고민이나 질문은 편하게 댓글로 남겨주시고, 언제든 학습 관련 고민이 생긴다면 오르비 쪽지나 댓글, 카카오톡 플러스친구 채널 ASK MENTOR(검색용 ID : mentormath)로 질문주세요!!! 감사합니다!~!
- MENTOR 칼럼 -
선택 과목 기하에 대하여 바로가기
수학 모의고사 행동강령 바로가기
매일 계획만 세우고 있다면 바로가기
수학Ⅱ 함숫값의 변화량은 도함수의 정적분 값 바로가기
샤대생의 은밀한 수학 공부법 바로가기
수학Ⅱ 극한에 대하여 바로가기
수학 가형 백분위 43 → 95 비결 바로가기
기억을 도둑질하지 마세요 바로가기
3월 학평 복습 문항 <공통 과목> 바로가기
3월 학평 복습 문항 <선택 과목> 바로가기
- 2021학년도 수능 & 2022학년도 예시문항 분석 칼럼 -
2021학년도 수능 수학Ⅰ 바로가기
2021학년도 수능 수학Ⅱ 바로가기
2021학년도 수능 확률과 통계 바로가기
2021학년도 수능 미적분 바로가기
2022학년도 예시문항 수학Ⅰ 바로가기
2022학년도 예시문항 수학Ⅱ 바로가기
2022학년도 예시문항 확률과 통계 바로가기
2022학년도 예시문항 미적분 바로가기
2022학년도 예시문항 기하 바로가기
좋아요 개수 ∝ MENTOR 자료 퀄리티
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전문대갈건데 1
솔직히 나 예쁘고 돈도 많이 번다는데 하 …. 왜 이 학벌만… 수시 버리지말걸 ㅋ...
-
2일연속 밤새기 0
아침에 몇시간 쪽잠자긴 했는데 힘들다
-
세지친사람 있나 7
요번수능뭔가 이기상 저격같은데...
-
ㅈㄱㄴ 특히 국어
-
ㅈㄱㄴ
-
사람은왜코를골까
-
어문계열정도는 가고싶은데 가능할까요 정법 3 뜨면 아예 불가인가요..
-
숏치고 잔다 1
제발 공매도 성님들 한번만 도와주이소 나한테 뜯어간 돈가지고 공매도 치는거 아니오...
-
언매기하물2경제 15
언매기하물2경제 에반가요? 현역 화작기하물1물2했었고 화작4틀1등급놓침 -> 언매로...
-
지금 메가 대성 31 이투스 29
-
근데 만약 메가 혹은 대성 수학 컷이 맞았을 경우에는 1
왜 그렇게 나오나 생각을 잠깐 해봤는데 전년도와의 가장 큰 차이점은 의대 정원...
-
ㅋㅋㅋㅋ
-
알바 0
추천좀여
-
모두가 88을 외칠때 저는 조용히 84~85로 외치겠습니다. 사실 다른 분들이...
-
작수 가채점 끝난 저녁날, 받아든 가채점 결과는 언미영물지 13323. 목표에 한참...
-
인간 미쳐버리기 만드네 그냥..
-
뭔가 수위좀 있는거 같아서 군대에서 보기 좀 그럴듯
-
사람은 진짜 없는 느낌
-
지금부터 서로 죽여라?
-
뭐냐 에반게리온급이네 ㅅㅂ이
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 3
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
-
여성 인권운동가 아이민 1334714에 대해 araboza 4
우선 해당 아이민을 댓글을 기준으로 검색해보도록 하자 놀랍게도 여대,페미 관련...
-
경희대 논술 0
수리 논술인데 2-1에서 범위를 0<a<2/5까지라해서 틀리고 3-1에서 C값을...
-
수능은 끝났는데 3
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 6
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
-
얘네 지금 볼 필요 없음 그냥 놀아요
-
진학사? 2
다들 진학사 결제 하셨나요…? 아니면 다른 거 쓰시나용 요즘 걱정돼서 잠이 안 옴 ㅎ….
-
전날까지도 자꾸 실모에서 개념문제 하나씩 나가길래 수능날 실수하면 죽겠다는 마인드로...
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
심심한데 0
뭐 질문해줘요
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
-
서강대교 성수대교 한강대교
-
마렵네 :)
-
질병분류체계에 정신병으로 한국페미 집어넣어야한다 반사회적 인격장애와 경계선지능장애가...
-
똥줄타실것같음
-
이과고 연대 활우 성대 과학인재 중대 탐구형인재 썼는데 연대만 1차 붙어서 면접...
-
글 리젠이 없네 0
흑흑
-
미코토 이쁨 3
-
마히루 이쁨 1
-
타이탄 이쁨 4
안녕하세요 MENTOR 박지민입니다.
확정된 삼각형에 대해 제가 "6개 중 아무거나 3개를 알면 삼각형을 확정할 수 있다." 는 문장이 오류가 아니냐는 의견에 대해 설명드리고자 합니다.
해당 글에서 AAA는 제외된다고 명시해두었고, 합동이 아니라 하더라고 사인 법칙을 이용해 해당 삼각형 각 변의 길이비는 파악 가능합니다. 이런 의미에서 AAA 역시 삼각형에서 충분한 단서가 됩니다.
또한, AAS의 경우 합동 조건은 아니지만 나머지 각이 둔각인지 예각인지에 따라 2개의 삼각형으로 추려지고 두 개의 삼각형은 문제의 조건으로 추려지기 때문에 따로 언급하지 않았던 것이고, 해당 자료에서 삼각형이 하나로 확정된다, 합동이다 등의 표현은 사용하지 않았습니다.
수학적으로 엄밀히 표현하려면 서술을 조금 더 상세히 해야 했겠지만, 자료에서 보셨듯 저는 "수학적 엄밀함"보다는 "수능 수학에 대한 태도"를 보여드리고 싶었던 것이고, 이 때문에 이런 의견이 나올 수 있다고 생각합니다.
가독성을 높이고자 하는 부분에서 자칫 학생분들께 혼란을 드릴 수도 있었겠다는 생각이 들었고, 앞으로는 이런 부분에 더욱 신경쓰도록 노력하겠습니다.
감사합니다.
감사합니다!!!!
감사합니다.
감사합니다!!!!
와 감사합니다!!! 잘 쓸게요
잘 써주신다는 말이 감동이네요! 화이팅!!!