지금당장~~ 풀어주세요 ㅠㅠ
게시글 주소: https://iu.orbi.kr/0003476180
일단 역행렬 식이 ㅇ 이 안되는 걸로 식을 세워도 (-a+b)cos세타 는 1이 아니다 잖아요 여기서 어떻게 풀어야할지를 모르겠어요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
헤어디자이너 쌤이 오늘까지 감지 말랬어요.
-
믿말언제옴 1
뻘글없으니까 심심하네
-
엄마 왈 13
나보고 냄새난다하심... 어젯밤에 머리감았는데 방에서 누린내가 난다나...
-
점 빼야하는데 0
제모하는김에 같이할걸그랫나
-
과 어떻게 감?
-
본인이 결백함을 꾸준히 증명해야 할듯
-
확통96 1
2뜨는 가능세계있음?
-
올해 목표 6
취해서 필름 끊길 때까지 마셔보기
-
그래서 어쩔수없이마심 아님너무불안함
-
이제늅이가아냐
-
모여랏
-
고2의 고민 0
일반고 내신 2.5 이과 공대 희망중 교과로 갈 생각인데.. 최저 2합 5,6 3합...
-
대성 언매 추천 1
언매 개념강의 추천해주세요 유대종? 김승리?
-
은 아니지만 제 진짜 생일이 다음주에 있답니다 후후
-
있나요 ?
-
술 뚫는법 17
없나요 태어나서 한번도 안마셔봤는데 12월에 결과가 다 떨어지면 집에서 술이나 맨날...
-
잠 안와서 ㅇㅈ 4
-
새삼 1년 전 저랑 지금 저랑 비교하면 상황이 꽤나 바뀌었음을 느낍니다
-
옯서운 이야기 2
디렉터님이 이렇게 까지 하셨는데 아무도 후기 안 올림ㄷㄷ 다들 메가스터디 들으시나?
-
히히
-
이제 메리트 그닥 없음. 그 정도로 노력해서 준비하는데 대부분 헌급공 가는 거...
-
뭐지 올해 처음으로 편의점에서도 캐롤 들은 느낌
-
문과라인 2
중앙대하나쓰고 성대 냥대 스나 해볼까싶은데 무리하는걸까용 중대를 2개 쓰고 한장만 스나 할까요
-
여기저기 눈팅하다보니 ??? : 물리 1컷 47점이 말이되나ㅋㅋ (50점) ???...
-
작년 인하대 70%컷이랑 올해 진학사 지원자 평균 점수랑 차이가 많이 나는데 원래...
-
어제 생일이었다는 거임 18
그래도 기억해주시는 아버지 감사함니다
-
논지 정리 어떻게 해야 됐나요.. 제시문 이랑 문제 자체는 쉬웠는데 쉬워서 그런가...
-
면접응원감 ㅋㅋ 내년에만나요(사실못만남)
-
언매확통생윤사문 97/70/1등급/96/93 백분위 이정도면어디까지 쓸 수...
-
mt도 안가 행사도 안가 rc프로그램도 안해 기숙사에 감금됨 그냥 너무 심심하다 진짜
-
낮3이면 따라가기 힘드나???
-
ㅇㅇㅇ
-
빛에너지를 흡수하는 광합성도 흡열반응에 포함되는데 그렇다면 빛에너지를 방출하는...
-
기하의 장점 2
뭔가요?
-
나루토 재미따 14
아직 전체1/3도 안와서 그런건진 모르겠지만 스토리가 짜임새있게 잘 짜여진 느낌
-
화미생지
-
한양대 식품영양학과 논술 보러 가야할까요? 메가 기준으로 지금 현재는 한양 식품이...
-
1월에 CPA 시작해서1,2월달에는 고시원에서하고 3월에 군대에서 조금씩이라도...
-
올해는 03이 갈 때
-
코인으로요즘돈좀벌었음 35
나한테오면술사줄께 남고생들연락줘ㅎㅎ
-
지금 봐봤자 의미없는건 알지만 텔그는 연고 하위-성한 상경으로 보고 진학사는 성한...
-
48점, 27번틀 27번에 1번 대우가 정확히 뭔지 몰랐는데 맞는 설명이었고요.....
-
지금 이거 만표 73 잡히고 있는데 님들 이거 그대로 유지될 거라고 보시나요..?...
-
재수생 직업추천(매우진지 도움필요)들어와서 투표만 부탁해여 5
내 진로를 익명의 공개적인 공간에서 도움을 구한다는게 웃길수도 있지만, 다양한...
-
국어 지문 완벽하게 이해했다 기준이 뭐라 생각하심? 4
제목이 곧 내용
-
도표는 걱정하지마십쇼 넵
-
다이어트 시작함 5
살빼면 예전의 얼굴을 되찾을수있을까 나름 아동복모델도 했었는데..
-
남들은 안읽씹 잘하던데 난 성격 상 진짜 못하겠음 내가 지는거같네.. ㅠㅡㅠ
답은 7아닌가요?
죄송한데 답을 몰라요 ㅠㅠ
근데 보기에있네요 ㅎㅎ 어떻게 푸셨어요?
7맞는듯 보기에도 있으니ㅎㅎ (-a+b)cosθ는 1이 아니다 까지 나오셨으면 이제 가만히 생각해봅니다. 이런 생각 계속 해보는게 중요해요. 틀리면 개쪽이지만...ㅎㅎ-1<=cosθ<=1이니깐 (-a+b)는 -1초과 1미만 이여야해요 그러니 그래프 그리면 -1=<(-a+b)=<1 이거랑 문제 조건이랑 맞춰풀면 되요ㅎㅎ
감사합니다~~~
죄송한데 답을 몰라요.....
근데 보기에 9는 없네요....ㅠㅠ
보기는 4 / 7 /11 /15 /18
7맞네요 ㅋㅋㅋ ㅠㅠ 전 cos세타의 범위가 -1에서 1까지니까 (b-a)cos세타는 1이 아니다에서 (b-a)로 나눠줘서 (b-a)분의 1이 -1과 1사이에 안겹치도록 하는 부분을 찾았는데
근데 값이 0일지도 모른는데 마음대로 나눠줘도되는건가요????,,,, 제가 배운바로는 마음대로 막 나눴다고 틀린적이 몇번 있어서 ㅎㅎ
보통 나누는 방법은 님말대로 별로 추천하는 방법은 아닙니다. 허나, 0일 때와 0이 아닐 때로 나눠서 풀 수도 있고 그렇게 풀어야하는 문제도 있습니다. 하지만 이 문제처럼 나눠서 풀 수도 있는 문제는 나누는 것은 귀찮고 틀릴 수도 있기 때문에 비추입니다. (프리랜서님은 그 부분에 숙달되서 자기 것으로 만들었기 때문에 그 방법이 더 쉬울 수도 있습니다.)
음 그렇군요 ㅎㅎㅎㅎ조언 고맙습니다~~
{A+COS(THETA)}{(B-COS(THETA)} = AB+SIN^2(THETA)
이 식을 전개합니다.
AB +(B-A)COS(THETA)-COS^2(THETA) = AB+SIN^2(THETA)
이 식에서 삼각함수가 일차인형태는 cos뿐이므로 우변의 sine함수를 cosine함수로 바꿉니다.
소거까지 해 줍시다.
(B-A)COS(THETA)-COS^2(THETA) = 1-COS^2(THETA)
그러면 (B-A)COS(THETA) = 1이 아니라는 결과가 나옵니다. 말씀하신것 처럼.
'THETA값에 관계 없이'라는 말에 주목해야합니다.
원래 COS이라는 함수는 주기함수이면서 최대값과 최소값을 가지죠. 여기서 알 수 있는것은
B-A가 0이어서 좌변이 항상 1이 되지 않거나, B-A의 절댓값이 1보다 작아서 1에 도달할 수 없게 만들면 됩니다.
따라서 그림을 그려서 넓이를 구해보시면 16-9=7이 나오겠죠
오 이해가 잘되었어요 ~ 이런 논리적인 풀이 마음에 드네요 ㅎㅎㅎ
감사합니다~
B-A가 0이라는것도 결국에는 저 영역에 포함이 되니 상관은 없지만, 위에서 말씀하신대로 마음대로 나누어서는 위험할 수 있기 때문에 꼭 짚고 넘어가셔야 합니다.
맞아요 저런 이거나 같은 것은 꼭 챙겨야해요
저 범위에 포함이 안됬었으면 더재밌는 문제 였겠네요 ㅋㅋㅋㅋ