나머지가 같으려면요
게시글 주소: https://iu.orbi.kr/0003352021
어떤 조건있어야하나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
테슬라야아..
-
나도좀껴줘ㅠㅠㅠ
-
기분전환용 취미 4
오디오 인터페이스랑 마이크 하나 싼걸로 사서 기타랑 연결하고 미디 작곡 시작할 예정...
-
지방러인데 주변 동창들보면 카이스트 고대 연대는 좀 있는데 서울대는 아예 한명도...
-
대학 고민이요 0
현06 일반고 내신 3.4입니다 과기대 기계 충대 기계 떨어지고 수시 명지 전자...
-
공부잘하고싶다 1
쩝...
-
삼수 돈 모으려 하는데ㅜ 알바 경험이 없어서 안구해지네요ㅜ
-
하..그냥 소장용으로 하나 사야겠다
-
중학교내신은 예체능기가정보등 버린과목이랑 수행 다 포함해서 146명중에 23등이고...
-
플스는 거지라 못사고 pc는 뭔 요구사양이 안드로메다로 가버려서 불가능...
-
생1 유전땸에 3떠서 사문으로 도망칠려는데요 1. 서성한 공대 노리는거면 사탐런...
-
SKYSSHCKHS - 3 +- 0.5 메디컬 3.5 +- 0.5 대치동 및 강남8학군 +0.5
-
공통만점이긴한데…
-
입이 근질근질한데 돈이 읎어서ㅋㅋ어우 대충 그렇습니다 사생활이긴한데 밤에 바쁘게...
-
수능 끝나고 완주한 게임이 파크라이5 하나밖에 음슴 4
하루종일 컴퓨터 앞에 앉아있진 않았어도 꽤 많이 했는데 거의 대부분 깔았다 지웠다...
-
대학교 공통수학 범위가 고등학교로 내려오면 수능이 이런 느낌이겠다 싶음 솔직히......
-
잡내는 나는데 누린내는 나면 안됨 정구지는 양념 되어있어야하고 소면도 줘야함 김치랑...
-
문과미적이임 공통 12월까지 시발점+쎈 삼회독 (+노제도형노베공수간단히) 끝나면...
-
나빼고 다들 먼가 뒤에서 친한 것 같음
-
외로워뇨 8
진짜 진심임뇨
-
개빡치네 2
뻥임뇨
-
대학 가본적이 한번도 없음
-
츄베릅
-
하 개떨리네
-
국어 백분위 96 고정 vs 수학 백분위 98 고정 28
이럼 어떰
-
고딩 때는 많았는데 슬퍼
-
다들 잘자시게 8
-
25수능 독서 지문 및 문항 해설+엮어읽기, 앞으로의 학습 방향 2025 국수영탐...
-
님드라 이거 보고가 14
당신은 따봉 전기쥐의 가호를 받았습니다 그로인해 원서영역이 대박날 것입니다
-
406.3인데 cc임..
-
현역 물리 밀려쓰고 지거국가서 학고반수함 국어는 2등급에서 3등급 왔다갔다하는성적...
-
주무십쇼 2
오늘 할 거 다 함
-
풍산자 괜찮나요? 서술이 가장 자세해 보이던데
-
미야오 안나 8
-
벌써 16레벨을 앞두고 있구나....
-
혀누진..? 3
이건 그냥 영상만 활용한다는 걸까요?
-
내려가기도 했군여
-
[칼럼] 24학년도 수능 독서 분석(평가원화 ver.) 3
1년 전에 제가 작성했던 '2024학년도 수능 독서 주요문항...
-
1.25배속이었네
-
삼밤수 하고 싶은데. 서울대 가고 싶은데 제가 공통은 많이 맞추는데 확통을 못해서...
-
새벽이라 그런지 뒤지게 춥네
-
아이오 못토 조카이 나테 이타이타이노 돈케테 손자이칸지 보쿠보쿠 나가루루루 아이...
-
올해 국어 한거 정석민 문개정, 문상추, 문기정, 비독원, 비원실, 비실독 김승리...
-
잭팟 전형으로 서성한 ㅆ가능?
-
ㅇㅈㅎㅈㅅㅇ 5
-
진학사 기준 402인데 (과탐)가능한 곳이 있을까요?? 내신은 bb 예상합니다.
-
폐 썩어서 빨리 죽어도 상관없는데 걍 성인 되면 피워볼까
-
※ 이 글의 내용은 미천한 일개 작성자의 "느낀 점"에 불과하며 기억 왜곡, 또는...
몫이 같은 인수?가 있으면 되는거 같은대 잘 모르겠어서 ㅜㅜ
정수론에서의 문제인지 다항식에서의 문제인지 알려주세요
다항식에서요! 정수론에선 또 다른건가요?
그냥 다르다기보다는 설명하는방법에 차이가 있으니까요 ㅋㅋㅋㅋ;;
다항식의 경우 두가지로 생각할수 있는데
10가에서 배웠던 지식인 나머지정리를 이용하면(지금은 수-상이었나....)
f(x)와 g(x)가 h(x)로 나눈 나머지가 같다고 보면
f(x) = h(x)Q(x) + R(x)
g(x) = h(x)Q'(x) + R(x) 로 두고 나머지정리법을 이용하여 h(x)=0을 만족하는 값을넣어서 푸는것과
두 다항식의 차가 몫을 인수로 가지게 되면 되겠네요
어차피 두 방법이 다 같은 맥락이니까(위의 두식의 차) 실질적으로 한가지네요.. ㅠ
Fx를 gx로 나눈 나머지 R
Fx를 hx로 나눈 나머지 k
Fx를 gxhx로 나눈 나머지 y라고 할때
R=y
K=y 성립하는건가요?
그런대 y=a g(x)+R이건 어떻게 알수 있는건가요 ㅠㅠ
^^ F(x)를 나눌때 나누는 식의 차수에 따라 나머지는 달라지겠지요? 1차식으로 나눈다면 나머지는 상수, 2차식으로 나눌때는 일반적으로 나머지는 1차식이 되므로, 위처럼 일방적으로 R=y, K=y는 성립하지 않습니다. ^^ 그리고 y=a g(x)+R, 이건 F(x)=g(x)h(x)+y(x)라고 두었을 때, F(x)는 이미 g(x)로 나누었을 때 나머지가 R이라 주어져있으므로 F(x)=g(x)h(x)+y(x)에서 g(x)h(x)는 이미 g(x)로 나누어 떨어지므로 y(x)를 g(x)로 나눌때 나머지가 R인걸 알 수 있지요? 그러므로 y(x)=ag(x)+R로 둘 수 있습니다.^^
^^ F(x)를 나눌때 나누는 식의 차수에 따라 나머지는 달라지겠지요? 1차식으로 나눈다면 나머지는 상수, 2차식으로 나눌때는 일반적으로 나머지는 1차식이 되므로, 위처럼 일방적으로 R=y, K=y는 성립하지 않습니다. ^^ 그리고 y=a g(x)+R, 이건 F(x)=g(x)h(x)+y(x)라고 두었을 때, F(x)는 이미 g(x)로 나누었을 때 나머지가 R이라 주어져있으므로 F(x)=g(x)h(x)+y(x)에서 g(x)h(x)는 이미 g(x)로 나누어 떨어지므로 y(x)를 g(x)로 나눌때 나머지가 R인걸 알 수 있지요? 그러므로 y(x)=ag(x)+R로 둘 수 있습니다.^^
아 어제 새벽 세시부터 이거 하고있는데 너무 어렵네요 답변 감사드립니다
이해를 못하면 답답하고 열받아서 이해할때까지 쓸대 없이 집착하게 되네요 ㅠㅠ찾아 보니까"피제수 제수 원리 어쩌고 뭐 이해를 잘 못하겠더라구요"
"Gx로 나누어 떨어지면 y를 gx로 나눈 나머지를 알수 있는 이부분을 잘 이해를 못하겟어요 ㅠㅠ" 숫자로는 24를 5로 나누면5 4+4 .,,,15로 나누면 15 1+14
다시 14를 5로 나누면 4이런거 같은대 나머지를 원래 꺼로 나누면 나머지가 같아지는 이유를 모르겠어요 신기한대도 ㅠㅠ
나머지는 gx의 배수가 아니고 gxhx보다 작다 >이거 가지고 gx로 나눈 나머지와 같다를 알아야하는거 같은데 잘 이해가 ㅠㅠ