웅이이 [409879] · MS 2012 · 쪽지

2012-11-14 13:50:10
조회수 647

뜬금없이 회전체 질문이요..

게시글 주소: https://iu.orbi.kr/0003205522


첫번째 그림을 x축으로 회전 시킨 회전체랑
첫번째 그림을 y축으로 회전 시킨 도형(두번째 그림)을 다시 z축으로 회전 시킨 회전체랑 어떤 차이가 있는거죠.. 도저히 모르겠어서요..ㅠ

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 섭섭해 · 410033 · 12/11/14 14:00 · MS 2018

    이게 말로표현하기 어렵네... 머릿속으로 돌려서 회전체 만든다음에 회전체를 여러방향에서 살펴보세요.

  • 수능은4개월 · 382485 · 12/11/14 14:07 · MS 2011

    오른쪽거 회전체: 왼쪽과 같은 그림이 돌아가는 거 vs 밑면의 반지름 1인 원이 돌아가는 거 두개만 생각해도 a값에 따라서 차이가 날겁니다. a가 1이상이면 차이가 안나려나... 또 왼쪽 그림이 타원이 아니고 포물선모양이라면 차이가 좀 더 많이 생길겁니다.

  • 이제마지막이에요 · 343391 · 12/11/14 17:44 · MS 2010

    두 도형이 같은지, 다른지, 다르면 어떻게 다른지를 살펴보려면 겹쳐지는 부분을 살펴봐야해요.
    왼쪽도형을 x축으로 한바퀴 삥돌리면서
    오른쪽도형과 겹쳐지는 부분을 파악해보세요.

    햇갈리시면 x축방향에서 원점을 보는 방향으로도 봐보시구요

  • syzy · 418714 · 12/11/14 22:24 · MS 2012

    특별한 말은 없는데 아마 포물선이겠죠?

    먼저 좌측 그림에서 x=c라는 직선으로 자르면 y좌표는 a(1-c^2 )입니다. 이게 x축까지의 거리.

    이제 우측 그림에서 z=c라는 평면으로 자른 단면을 생각해보세요. 단면은 0<=y<=a(1-c^2 -x^2), z=c 를 만족하겠지요. (x는 -루트(1-c^2 ) <= x <= 루트(1-c^2 ) 에서 변화.)

    가장 바깥쪽 점을 표현하면, (x, a(1-c^2 -x^2 ) , c)가 될텐데, 이 점에서 z축까지의 거리는 루트 ( x^2 + a^2 (1-c^2 -x^2 )^2 )입니다. 위의 범위에서 x가 변화할 때 이 거리의 최댓값이 실제 회전체의 z=c 단면에서의 반지름이 되겠지요. 계산해보면,
    (2a^2 (1-c^2 ) -1)/ 2a^2 <= (1-c^2 )/2 일 때는 (즉, a^2 (1-c^2 )<=1일 때) x= +-루트(1-c^2 )일 때 최대(x절편 비슷한 점일 때. 단면 z=c내에서)
    (2a^2 (1-c^2 ) -1)/ 2a^2 >= (1-c^2 )/2 일 때는 (즉, a^2 (1-c^2 )>=1일 때) x=0일 때 최대(포물선의 꼭짓점일 때)

    이게 좌측 그림에서 구한 거리인 a(1-c^2 )이 될까요?

    a<=1이면, 어떤 c에 대해서도 좌측 그림에서는 a(1-c^2 ), 우측 그림에서는 루트(1-c^2)이 나오므로 항상 다릅니다. a=1, c=0이거나 c=1인 경우 빼고.. (직관적으로도 a가 작으면 포물선이 납작해서, z축에서 가장 먼점이 포물선의 꼭짓점 부분이 아니라 x절편 비슷한 점일 때임을 알 수 있지요.)
    a>1이면, 1- 1/a^2 >=c^2 인 c에 대해서는, 포물선의 꼭짓점 부분이 가장 z축에서 멀고, 1- 1/a^2 <=c^2 인 c에 대해서는, 포물선의 양끝점 부분(x절편 비슷한 부분)이 가장 z축에서 먼 것을 알 수 있습니다. 즉, 중앙 부분에서는 좌측그림의 회전체와 같지만, 양끝으로 갈수록 좌측그림의 회전체보다 좀더 튀어나오는 형태의 입체가 될것입니다.