뜬금없이 회전체 질문이요..
게시글 주소: https://iu.orbi.kr/0003205522
첫번째 그림을 x축으로 회전 시킨 회전체랑
첫번째 그림을 y축으로 회전 시킨 도형(두번째 그림)을 다시 z축으로 회전 시킨 회전체랑 어떤 차이가 있는거죠.. 도저히 모르겠어서요..ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 3
그렇습니다
-
킁킁
-
뭐지 진짜
-
다 열심히 연계 공부했는데 저 셋중에 하나도 안 나온 게 너무함 이동하는시간...
-
ㅇㅈ 6
영정사진 ㅇㅈ
-
ㅇ 2
-
95인지 97인지 잘 모르겠음 37이랑 41 틀렸는데 41을 2랑 3이랑 고민하다가...
-
팔로우 쌀먹을 시전하려는 나쁜 인간들!
-
당연히 수학황은 아니지만 낮은 등급대이신 분들꼐는 제가 겪은 시행착오가 조금이라도...
-
후회 하고있어요 3
우리 다투던그으날
-
심찬우 강민철 김승리 … 고민됩니다ㅜ
-
ㅇㅈ 막차 10
펑
-
진짜 금시초문인데 또 완전 개소리같진 않아서 경험자분들 와서 알려주셈
-
바로.. 수능 샤프 모으기 내년엔 무슨 색일까?
-
서울대 체대 1
수능끝나고 체대입시 준비하면 현실적으로 불가능한가요? 서울대체교과 넣고싶은데 입시...
-
여러분들은 무엇이 문제라 생각하십니까 512분의 조사동안 무엇이 들통난 걸까요
-
1명이 중복으로 다는 건 하나로 취급함 사회실험
-
모두 잘 살아라 6
난 잘 못살겠다 장례식은 지금 열음 굿다이노
-
ㅇㅈ 3
외접
-
난빌런 << 이새기는 걍 노력을 안함 ㅋㅋ
-
아일릿에 입덕해보는게 어떨까요?
-
난 딱 두 번 그래 본 적 있음 딱히 그 사람한테 얘기하진 않았었는데... 흠
-
전에도 덕질 몇번 해봤긴 하지만 올 초에 어떤 가수에게 정신이 넘어가고 진짜...
-
인설의 목표 사반수 선택과목 추천좀요 국영 그럭저럭 하고 수학은 1컷에서 중반정도...
-
더코 왜필요함? 14
확인하는법 몰라서 가만히 있다가 오늘 알았음ㅋㅌㅋㅌ 7000정도라고 뜨는데 이거로 뭐함?
-
쎈+뉴런 조합이 은근 좋은거같음 뉴런 자체 문제가 조금 부족한것도 있고 난이도...
-
과탐2개봤으면 4
강대 시대같은 곳에 인문전형으로 지원 안될까요? 25수능 과탐 두과목 봤고 둘 다...
-
몇명있았을까
-
ㅇㅈ 2
완
-
인스타도 그냥 내가 맞팔하고싶은사람만 하면 안되나? 싶음 N수할때 나한테 연락해준...
-
이거 가시나요?
-
아 ㅇㅈ메타였네 4
이걸 탑승 못했네 아쉽
-
올해는운동도열심히좀하고
-
수학 2등급이상만 22
올해수능수학 공통에서만 15,20,21,22를 못풀었거든요..뭐가 문제일까요...
-
날지켜봐줘
-
진짜 자야지 2
진짜임! 아마도..
-
약대가서 꿀빤다 ㅇㅈ? 한의학 그거 다 사이비 아닌가.
-
휴게소가 도로 위에 걸쳐있음
-
제발요
-
ㅇㅈ)) 7
펑 따봉
-
올해는 한까없나 1
한의대 컷좀 마구 낮춰줘요
-
많이 읽은 건가요?
-
한문제만 더 맞추면 탐구평균 2띄워서 고대설대 최저 맞추는데 에라이 씨잎새과목 왜...
-
엑셀로 하는건 알겠는데 잘 아는 사람읶음?
-
https://orbi.kr/00065763225 이 글을 쓴 사람도 교원대에서...
-
원점수(메가기준 백분위) 화작 93(95) 확통 96(97) 영어 4 경제...
-
ㅇㅈ했으니 0
-
진지하게 기하런 어때요 10
재수한겁니다 공통은 아깝다는 생각이라도 드는데 미적은 아깝지도 않습니다 삼반수를 할...
-
진짜에요?싸서 그런가
-
이거 가능성 있다고 보시나요...전 아무리 봐도 이 정도 난이도는 아닌 거 같은데..
이게 말로표현하기 어렵네... 머릿속으로 돌려서 회전체 만든다음에 회전체를 여러방향에서 살펴보세요.
오른쪽거 회전체: 왼쪽과 같은 그림이 돌아가는 거 vs 밑면의 반지름 1인 원이 돌아가는 거 두개만 생각해도 a값에 따라서 차이가 날겁니다. a가 1이상이면 차이가 안나려나... 또 왼쪽 그림이 타원이 아니고 포물선모양이라면 차이가 좀 더 많이 생길겁니다.
두 도형이 같은지, 다른지, 다르면 어떻게 다른지를 살펴보려면 겹쳐지는 부분을 살펴봐야해요.
왼쪽도형을 x축으로 한바퀴 삥돌리면서
오른쪽도형과 겹쳐지는 부분을 파악해보세요.
햇갈리시면 x축방향에서 원점을 보는 방향으로도 봐보시구요
특별한 말은 없는데 아마 포물선이겠죠?
먼저 좌측 그림에서 x=c라는 직선으로 자르면 y좌표는 a(1-c^2 )입니다. 이게 x축까지의 거리.
이제 우측 그림에서 z=c라는 평면으로 자른 단면을 생각해보세요. 단면은 0<=y<=a(1-c^2 -x^2), z=c 를 만족하겠지요. (x는 -루트(1-c^2 ) <= x <= 루트(1-c^2 ) 에서 변화.)
가장 바깥쪽 점을 표현하면, (x, a(1-c^2 -x^2 ) , c)가 될텐데, 이 점에서 z축까지의 거리는 루트 ( x^2 + a^2 (1-c^2 -x^2 )^2 )입니다. 위의 범위에서 x가 변화할 때 이 거리의 최댓값이 실제 회전체의 z=c 단면에서의 반지름이 되겠지요. 계산해보면,
(2a^2 (1-c^2 ) -1)/ 2a^2 <= (1-c^2 )/2 일 때는 (즉, a^2 (1-c^2 )<=1일 때) x= +-루트(1-c^2 )일 때 최대(x절편 비슷한 점일 때. 단면 z=c내에서)
(2a^2 (1-c^2 ) -1)/ 2a^2 >= (1-c^2 )/2 일 때는 (즉, a^2 (1-c^2 )>=1일 때) x=0일 때 최대(포물선의 꼭짓점일 때)
이게 좌측 그림에서 구한 거리인 a(1-c^2 )이 될까요?
a<=1이면, 어떤 c에 대해서도 좌측 그림에서는 a(1-c^2 ), 우측 그림에서는 루트(1-c^2)이 나오므로 항상 다릅니다. a=1, c=0이거나 c=1인 경우 빼고.. (직관적으로도 a가 작으면 포물선이 납작해서, z축에서 가장 먼점이 포물선의 꼭짓점 부분이 아니라 x절편 비슷한 점일 때임을 알 수 있지요.)
a>1이면, 1- 1/a^2 >=c^2 인 c에 대해서는, 포물선의 꼭짓점 부분이 가장 z축에서 멀고, 1- 1/a^2 <=c^2 인 c에 대해서는, 포물선의 양끝점 부분(x절편 비슷한 부분)이 가장 z축에서 먼 것을 알 수 있습니다. 즉, 중앙 부분에서는 좌측그림의 회전체와 같지만, 양끝으로 갈수록 좌측그림의 회전체보다 좀더 튀어나오는 형태의 입체가 될것입니다.