잭슨매니아 [420398] · MS 2012 · 쪽지

2012-10-18 17:09:13
조회수 744

수리 나형 지수로그 그래프 질문올립니다 포카칩님??

게시글 주소: https://iu.orbi.kr/0003126615

수리의 비밀 (나형) 에 있는 문젠데요, 와 여기꺼 문제들은..  같은걸 물어보는데 문제 하나하나 풀때마다 턱턱 막히네요..
패턴 11번 발견적추론은... 윽 언급 안하겠습니다 ㅋ

패턴 7에 지수로그 ㄱㄴㄷ문제 5번 내용인데요,

좌표평면 위의 점 (0.1)을 지나고, 실수 전체의 집합에서 f(x)>x 을 만족시키는 지수함수 y=f(x)의 그래프가
k>0 인 어떤 실수 k에 대하여 f(k)=k+1 을 만족시킬 때, 옳은 것은?
ㄱ. 생략
ㄴ. 0<x<k 이면 (f(x)-1)/x < 1 이다.    
ㄷ. x>k 이면 f(x)-x < (f(f(x))-f(x) 이다.

여기서 ㄴ.부터 문젠데요, ㄴ에서 (0,1) 과 (x, f(x)) 간의 기울기가 1보다 작다 를 뜻하는 건데,
f(k)=k+1을 어떻게 써먹어야 되는거죠??  0<k<1일 때는 기울기가 1보다 작은데, k>1일 때는 1보다 커지는 것 같은데,
밑도 미지수라서 a로 놓고 했는데 f(k)=k+1을 어떻게 사용해야 되는건가요??

아 방금 생각이 든건데 f(k)=k+1 니까  (k, k+1)을 지나고 (0, 1)인 직선의 기울기 (x=k일 때) 를 보면 x+1-1 / x = 1 이래서 k보다 작은 x에서는
기울기가 1보다 작은건가? 이건가요?? 어맞나? 맞나?? 이렇게 보는거에요??
어.. 그렇게 보면 ㄷ.도 (f(x), f(f(x)))과 (x, f(x)) 간의 기울기가 1보다 크다 로 바꿔주고 ㄴ이랑 똑같은 방법으로 하면 맞는게 되는데..

아시는분!!?

그리고 혹시 수리의비밀 책 패턴 10에 12번문제 (무한등비급수)
선분 A1B1 이 왜 A1D0의 1/2이 되는지 아시는분.ㅠ

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • Twisted Fate · 412035 · 12/10/18 17:25 · MS 2012
    '어떤'이라는 의미를 잘 생각해보세요
  • 잭슨매니아 · 420398 · 12/10/19 00:41 · MS 2012
    '어떤' 이라는 의미가 대부분 문제에서 임의로 정한 실수, 그니까 '정해지지 않은'을 의미하는 거였다면, 이문제에서는 '어떤' = '특정한' 이라는 의미로 쓰였다 .. 정도일까요??
  • Sevolky · 333183 · 12/10/18 20:00 · MS 2017
    이야 문제 좋당...

    님 문제를 풀어보면 f(x)가 x보다 늘 커야 되기 때문에 지수함수를 y=a^x로 둘 때, a>1이어야 되는거 캐치하신거 맞죠?

    그러고도 k>0인 어떤 실수 k에 대해서 f(k)=k+1을 만족시키려면 지수함수의 밑이 혼자 폭발해서 마구 가면 안된다는 뜻일 거에요

    그렇게 y=a^x와 y=k+!를 '교점이 있도록' 그려주시면 보기 ㄴ을 만족하는 걸 알 수 있죠

    님이 말씀하신대로 " (0,1) 과 (x, f(x)) 간의 기울기가 1보다 작다 를 뜻하는 건데,
    f(k)=k+1을 어떻게 써먹어야 되는거죠?? 01일 때는 1보다 커지는 것 같은데, "

    가 맞는거구요 여기서 f(k)=k+!이 써먹어지는건

    f(x)=x+1을 그렸을때 그 직선의 기울기 자체가 1이니까 x
    그게 님이 말씀하신

    "아 방금 생각이 든건데 f(k)=k+1 니까 (k, k+1)을 지나고 (0, 1)인 직선의 기울기 (x=k일 때) 를 보면 x+1-1 / x = 1 이래서 k보다 작은 x에서는
    기울기가 1보다 작은건가? 이건가요?? 어맞나? 맞나?? 이렇게 보는거에요??"

    이 부분이 그 말씀하신거 맞죠?
  • 잭슨매니아 · 420398 · 12/10/19 00:39 · MS 2012
    감사합니다! 드디어 깨달았네요!! 와 풀때 솔직히 음 a>1이란 거 캐치하고 와 이런 표현도 있나 감탄하고.. f(k)=k+1이라는걸 그래프를 한 5번 그렸는데도, 다 맞게 그려놓고 거기서 (0, 1)과 (k, k+1) 사이 기울기 자체가 1이라는 그걸 참 늦게 알았네요.. 다 해놓고 아오 ㅜㅜ ㅋ이런문제 나왔으면 좋겠다 나만 맞게 ㅋㅋㅋ 는 개뿔 나오면 풀었던 거여도 틀릴듯.. ㅜㅜ 수리 장애인이라 ......... ㅠㅠ 한문제 한문제가 참 들었다 놨다 하네요
  • Sevolky · 333183 · 12/10/18 20:08 · MS 2017
    ㄷ 도 추가적으로 설명하겠습니다

    x>k인 지점에서는 기울기가 1보다 크기에, y=x+1 직선보다 a^x가 위에 있기에, f(x)는 x보다 늘 클거입니다 그죠?

    그리고 y=x를 그래프에 그리세요 그리고 x>k인 지점에서 임의로 한점 k를 잡아서 a^x에 타고 올라가신뒤에 y=x까지 평행으로 그어서 다시 x축으로 내리세요 그러면 f(x) 값이 x 축위에 그려졋을거에요
    (뭔 소리 하시는지 아시죠? 이런거 몇번 해보셧으라 믿습니당.)

    그런다음 다시 x축 위의 f(x)값을 a^x값에 넣어보면 엄청나게 높게 올라가야된다는거 알꺼에요 그게 f(f(x))입니다

    딱봐도 ' f(x)에서 f(f(x))의 증가율'이 ' x에서 f(x)에서의 증가율'보다 엄청나게 크죠? 그렇게 보시면 ㄷ 보기도 맞는거 아실꺼구요

    아니면 제가 알려주신대로 한거에서 f(x)-x를 x의 증가율, f(f(x))-f(x)를 y의 증가율로 잡고 기울기 그려보시면 1보다 크다는 거 알껍니다

    --

    아 에프엑스랑 에프에프엑스 치기 조낸 귀찮 ㅜ ㅋㅋㅋ
  • 잭슨매니아 · 420398 · 12/10/19 00:42 · MS 2012
    감사합니다! 복받으실거예요 ㅋㅋ 아 이런문제가 널려있는데.. 큰일났네.. 기본문제 기출은 다 했고.. 기출중에서 킬러랑 포카칩 자작 킬러문제만 남았는데 아.. 무섭당 HIGHWAY TO HELL!!ㅋㅋㅋ
  • Sevolky · 333183 · 12/10/19 19:03 · MS 2017
    ㅅㄱ하세용~

    근데 수리의 비밀이라는 책이 이런 류의 문제로만 이루어져 잇나요 거의 다?
  • 잭슨매니아 · 420398 · 12/10/20 01:02 · MS 2012
    거의 다는 아니구요~ 음.. 앞에 개념편 빼고 패턴편에 기출이랑 뒤에 자작문제가 한 1:1 아니면 1.5:1로 섞여 있어요 ㅎㅎ 난이도는 제가 생각하기에 모의고사에 내도 손색이 없을 그런... 킬러문제도 수두룩하고... 미워.... 나 포카칩 안사먹을거야....
  • 이코노미 · 419719 · 12/10/18 21:13
    문제 쥑이네예~
  • 잭슨매니아 · 420398 · 12/10/19 00:42 · MS 2012
    맞죠?? 무서운 문제임
  • GeonuPark · 367317 · 12/10/18 21:46 · MS 2011
    힌트를 생략 해버리는 무자비함ㅠㅠ
  • 잭슨매니아 · 420398 · 12/10/19 00:43 · MS 2012
    ㄱ... 은... 제가 생각하기에 힌트가 아닐 것 같아서 생략했어요.. 그냥 문제의 예를 들어주는? 독서실에 놓고 와서 올려드릴수가 없네요 죄송함당ㅋ